Preliminary Design Review Presentation

University of Louisville River City Rocketry November 19, 2014

Launch Platform

Base and Ignition Station

- The ignition station is fastened to the base of the launch platform.
- Three support rails support the guide rails.

Vehicle Position and Orientation

 The vehicle will be held in the proper orientation by alignment plate shown here.

RCR | Preliminary Design Review | 11.19.2014

5

Payload Capture System

- Retrieves payload from ground and inserts into rocket
- Mounts onto side rail of AGSE
- 18.25" x15.98" x6.63"

Gripper Assembly

- Three gears driven by servo
- Touch sensor on each arm to detect payload
- 12VDC motor to move assembly vertically & horizontally

Threadless Ball Screw

- Low Cost
- Height from ground could vary from 18-48in
- Bearings are angled to simulate a thread pitch

RCR | Preliminary Design Review | 11.19.2014

Belt System

- Push rods connect slider and threadless ball screw assembly
- Slider attached to timing belt
- Motor drives slider backwards
- Gripper Assembly rotates 90 degrees

Ignition Station

Overall	Overall	Overall Width	Overall Mass
Height (in)	Thickness (in)	(in)	(lb _m)
4.00	3.00	4.20	4.17

Extrusion Wheel

- 4 Wheel assemblies.
- 1.5 inch diameter.

Spring Tensioner

- Keep constant tension on secondary drive wheels.
- Removable in case of damage

Igniter Augmentation

Requirements

Requirements	Performance Characteristics	Validation Method
Accurately place igniter	Control of igniter within an	Resolution of stepper
into the top portion of the	inch	motor movement during
rocket motor		testing
Stay within specified time	Control speed allowing	RPM of stepper motor
constraints	installation of igniter within	during testing
	a minute	
No movement of Igniter	Igniter will not move until	Inspection of Arduino code
until liftoff has been	given logic HIGH	
achieved		
Hardware remains fully	Reliability of stepper motor	Inspection of
functional post liftoff	and electronics to	Arduino/Shield data sheet
	withstand heat	

Design Challenges

Controlling both steppers simultaneously

- Arduino can only step one stepper at a time
- Use object oriented programming to allow alternating stepping at an imperceptible rate
- With the given clock cycle of 16MHz the time between steps is approximately 0.1 microseconds.

•
$$2 * \frac{1}{16MHz} = 2 * 0.065 \mu s \approx 0.1 \mu s$$

Design Challenges

Design Challenge	Solution	
Accurate guidance of the igniter into the motor.	Dowel rod sections will be attached to the igniter. The stepper motors will be used for movement of the igniter into the rocket.	
Disable Ignition of motor until approved by safety officer.	Power supply to igniter will be isolated by toggle switch	
Knowing when the igniter is in the proper position	Validation testing to be performed to measure true travel distance of the igniter installer.	
Keeping the igniter in the station during V.E.S. actuation.	The wheels that guide the igniter into the vehicle has grooves that will keep the wire in place.	
Components are able to withstand ignition	The motors will be behind the mounting plate. Tests to be performed to determine the amount of heat the motors will experience.	

Performance Characteristics

- Precision The stepper motors can place the igniter within 0.047 inches:
 - Circumference = $2\pi * 1.5$ *in* = 9.4 *in*
 - % of circumference per step = $\left(\frac{1.8}{360}\right) * 100\% \approx 0.5\%$
 - Distance of 1 step = 0.5% * 9.4 = 0.047 inches
- Accuracy The stepper motors can move the igniter 10 inches per second:
 - RPM of stepper = 60 RPM = 1 RPS
 - Circumference = 9.4 $in * 1 RPS \approx \frac{10in}{s}$

Verification Plan

Requirements	Performance Characteristics	Validation Method
House Igniter	Static in housing	Physical Validation
Insert Igniter	Igniter flush at upper interior of motor	Depth Markings on igniter housing
Post launch function check	Fully operational housing and retracted ignition housing at start position	Visual inspection

Controls

Number of Items	Description	Specs.
1	Arduino Uno	Microcontroller
1	Adafruit Motor Shield (Driver)	V2.0, 2-3 A,12 V port
2	Adafruit Stepper Motor	NEMA — 17, 350 mA, 12 V Size: 200 steps/rev Coil #1 Red &Yellow Wire Coil #2 Green & Gray
1	Power Supply	12 Volt

Test Setup

- 12 Volt Power Supply
- Arduino Uno
- Adafruit Motorshield
- 2x Stepper Motor
- PC running Arduino Software

Connections

- Left Red and Black wire is 12 volt power supply
- Top USB plug is to computer running Arduino Software
- Right 2 Stepper motors.
 Electromagnet:
 Coil #1 – Grey and Green
 Coil #2 – Red and Yellow

Soldering the Motor Shield

Connections

Arduino Uno on bottom with Adafruit Motor Shield soldered on top.

Vehicle Erection System

VES - Track

- Ball screw used for linear actuation.
- Two t-slotted aluminum extrusions provide linear guides.

VES - Carriage

- Nylon guides to reduce friction
- Wide spacing between load attachment points
- Loads centered on neutral axis

VES – Carriage Analysis

Load (lb_f)

100

VES – Carriage Analysis

VES – Articulating Arms

- Connects carriage to launch platform
- Two arms are used in complete assembly

Vehicle Erection System (V.E.S.)

- The ground station will contain all the elements of the V.E.S.
- The Esplora will implement a PI control algorithm to erect the system through the motors
- An accelerometer on the Esplora will monitor the tilt of the system, which will be used in a feedback loop to the PI controller

Vehicle Erection System (V.E.S.)

V.E.S. Flow Diagram

System's dynamical equations

• The erector diagram:

 Lagrange equation of motion based on kinetic and potential energy (K and P)

$$\tau_i = \frac{d}{dt} \frac{\partial K}{\partial \dot{\theta}_i} - \frac{\partial K}{\partial \theta_i} - \frac{d}{dt} \frac{\partial P}{\partial \dot{\theta}_i} + \frac{\partial P}{\partial \theta_i}$$

$$M\ddot{\theta} + B\dot{\theta} - \Pi = \tau.$$

• Laplace transform (system schematics including uncertainty Δ and disturbance δ):

System identification

$$H = \frac{0.47 * 10^{-3} (1 + 0.04s)}{(1 + 1.03s)(1 + 0.07s)} \qquad \Delta = \frac{2.11 * 10^{-2}}{(1 + 0.71s)} \qquad D = \frac{(1 + 1.28s)}{(1 + 1.43s)}$$
Compensator

 Based on the required characteristics (settling time, overshoot, noise reduction, disturbance rejection, etc.)

Automatic Platform Leveling System

Purpose

- Autonomously level the ASGE to allow the optimal angle for the rocket launch
- Decrease human involvement and error
- Optimize rocket launch and efficiency

Overview

Hardware

- Arduino Uno
- MPU 6050 Gyroscope
- H-Bridge Circuit
- Three DC Motors

Process

Ground Station Electronics

- Initiate start-up
- Integrate sub-systems
- Distribute electrical power
- Provide user interface

Master Boot switch energizes station

- Begin internal communication
- Boot to pause

- Limit autonomy with "Go No-Go" decisions
- Process begins after pause deactivation

System Integration

- Main connection path over I2C bus
- Custom wiring harnesses for signals and power
- Master controller directs sub-system operation

Power Distribution

- Reliable power regulation
- 24V Main Supply
- 5V regulated from VES motor controller
- 9V/12V provided through 78xx IC's

User Interface

- Master switch accessibility
- System status indication
- User friendly

Overall Vehicle Design

- 6" Diameter Carbon Fiber Launch Vehicle
- Adjustable Ballast System
- Removable Fin System
- Retractable Door Assembly

Overall Vehicle Design (cont.)

Primary Component Materials

- Carbon fiber
- Fiberglass
- Aluminum
- Stainless Steel
- Titanium
- ABS Plastic
- Plywood

Section of Launch Vehicle	Length of Section (in)	Mass (Ibs)
Nose Cone	30.85	5.335
Main Recovery Bay	27.5	5.905
Cache Containment Bay	21.5	7.83
Secondary Recovery Bay	28	4.977
Propulsion Bay	32	8.466
Witness Rings	2	0.201
Motor	N/A	5.604
	Total Mass	38.318

Vehicle Motor Selection

- Cesaroni L935-IM
- Obtained motor selection through various OpenRocket simulations trials

Total Motor Impulse

RCR | Preliminary Design Review | 11.19.2014

3146.8 N-sec

Stability Margin

- Overall Length: 143 in
- Overall Diameter: 6.17"
- Overall Mass: 38.3 lbs

- Stability Margin: 1.99
- CG Location (from tip): 87.35 in
- CP Location (from tip): 99.61 in

Subscale Verification

- A half scale model will be launched to verify aerodynamic properties of the rockets design.
- Will verify:
 - Aerodynamic properties and stability of the launch vehicle.
 - Custom vortex parachute design, and other recovery devices.
 - Range of on-board live Bluetooth feed from the launch vehicle to the ground station.

Subscale Verification (cont.)

Property	Full Scale	Subscale
Diameter (in)	6	3
Length (in)	143	72.35
Mass (lbs)	38.3	12
Motor Selection	CTI 3147-L935-IM-P	CTI 821-J430-WT-18A
Stability Caliber	1.99	2.75
Maximum Velocity (ft/s)	471 (Mach 0.42)	438 (Mach 0.39)
Maximum Acceleration (ft/s ²)	248	276

Nose Cone Design

RCR | Preliminary Design Review | 11.19.2014

- The equation used to model the nose cone was the Von Karman equation, otherwise known as the LD-Haack.
- Optimal usage in ranges of Mach 0.8-1.2.

•
$$y = \frac{R}{\sqrt{\pi}} \sqrt{\theta - \frac{\sin(2\theta)}{2} + C\sin^3\theta}$$

• C = 0 for LD - Haack

Adjustable Ballast System

- Designed to not interfere with avionics bay
- Adjustability of 0.33 lb increments

Adjustable Ballast System (cont.)

- AISI 1080 low carbon steel ballast
- o.o5" thick silicone spacer to reduce vibration during flight
- Allows for versatile manipulation of CG

Removable Fin System

- Designed for quick and easy removal and installation of fins
- Advantages:
 - Fins are immediately replaceable in the event of breakage
 - Accurate mounting allows for predictably stable flight
 - Test various fin designs
 - Easier transportation

Removable Fin System (cont.)

Components:

- Fore, middle, and aft fin centering rings
- Rear fin retainer
- Motor Casing Retainer
- All components machined from 6061-T6-Aluminum
- Centering rings are epoxied in place

Removable Fin System (cont.)

- Fin is inserted through airframe into slots at B and C
- Fin tab is pushed forward through slot A
- Rear fin retainer is installed onto aft fin centering ring (see next slide)

Removable Fin System (cont.)

Cache Containment

- Cache loaded into containment housing via autonomous arm
- 3D printed clips retain cache payload
- Servo motor controls door movement to seal cache from environment

Retractable Door Assembly

- A rotating 3D printed door was designed to allow for access to load payload into cache containment bay
- Door is to be sealed from the environment

- Rotational movement eliminates wasted space from linear movement
- Door is driven by a servo motor connected to a rack and pinion gear system

- Polyethylene track wheels are installed via steel should screws
- Polyethylene was chosen for its low static coefficient of friction against titanium (0.175)

- Two separate paths for track wheels on each guide
- Lower guide acts as the rack for pinion to run against

- N52 neodymium magnet holds door in place
- Pull force between magnet and ferrous target seals door against silicone gasket

Neodymium Magnet Grade	N52
Diameter (in)	0.4
Thickness (in)	0.375
Distance from Target (in)	0.2
Pull Force (lbs)	0.59
Number of Magnets/Target	4
Combined Pull Force on Door (lbs)	2.36

Vehicle Flight Path

	Event	Altitude (ft.)	Description
	1	3,000	Apogee. Nose cone ejection. Entire rocket under main parachute acting as drogue.
1	2	1,250	Eject lower airframe. Both upper and lower airframes now falling under main parachutes.
	3	1,000	Cache capsule ejection. All independent sections now under main parachutes.
All independent sections now under main parachutes.			
RCR Preliminary Design Review 11.19.2014			67

Recovery Plots

RCR | Preliminary Design Review | 11.19.2014

68

Kinetic Energy and Drift Calculations

Section of rocket	Mass (lb _{m)}	Area (ft²)	Diameter (ft)	Velocity (ft/s)	E (lb _f -ft)
Upper airframe	11.4	17.5	4.7	18.40	60
Lower airframe	13.8	58.4	8.6	16.73	60
Cache capsule	6.28	24.2	5.6	17.53	30

Wind speed (mph)	Distance drift from launch pad (ft)	
0	0	
5	242.9	
10	485.7	
15	728.6	
20	971.4	

RCR | Preliminary Design Review | 11.19.2014

1.0

e,

Cruciform Parachute Schematic

Avionics

- Nosecone: 2 StratoLoggers
- Lower Airframe: 2 StratoLoggers

1 Telemetrum

• Cache Capsule: 1 StratoLogger

72
Safety Features

Safety Manual

- Lab workshop safety
- Launch safety
- EE safety
- MSDS
- Energetics safety

Comprehensive launch procedure:

- Required tools
- Assembly instructions
- PPE
- Warning, Caution and Danger icons

Risk Assessment Matrix					
Probability Value	Severity Value				
	Catastrophic-(1)	Critical-(2)	Marginal-(3)	Negligible-(4)	
Almost Certain- (1)	2-High	3-High	4-Moderate	5-Moderate	
Likely-(2)	3-High	4-Moderate	5-Moderate	6-Low	
Moderate-(3)	4-Moderate	5-Moderate	6-Low	7-Low	
Unlikely-(4)	5-Moderate	6-Low	7-Low	8-Low	
Improbable-(5)	6-Low	7-Low	8-Low	9-Low	

Table 3: Risk Assessment Matrix

Risk Assessment Matrix:

- Lab and machine shop
- AGSE
- Electronics
- Recovery
- Vehicle
- Environmental

Educational Engagement

New programming!

- Robotics
- Programming through games
- Electronics
- Satellites

E-Expo

- Paper rockets
- Water rocket competition
 Big Brothers Big Sisters

RCR | Preliminary Design Review | 11.10.2014

2014-2015 Overall Budget

Overall Tentative Budget				
Budget		Total Cost		
Full Scale Vehicle		\$4,321.66		
Recovery		\$1,322.21		
Subscale Vehicle		\$946.08		
Payload "Arm" Budget		\$243.99		
Educational Engagement		\$778.79		
Travel Expenses		\$5,750.00		
Promotional Materials		\$975.00		
Safety Materials / Miscellaneous		\$1,739.75		
Ground Station		\$3,742.03		
	Overall Cost	\$19,819.51		

RCR | Preliminary Design Review | 11.19.2014