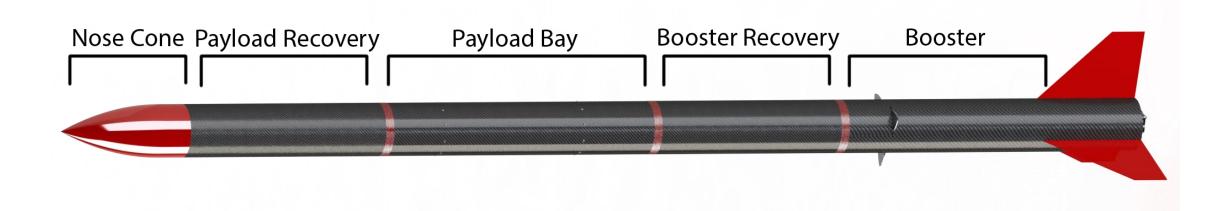


River City Rocketry

FLIGHT READINESS REVIEW (FRR) PRESENTATION

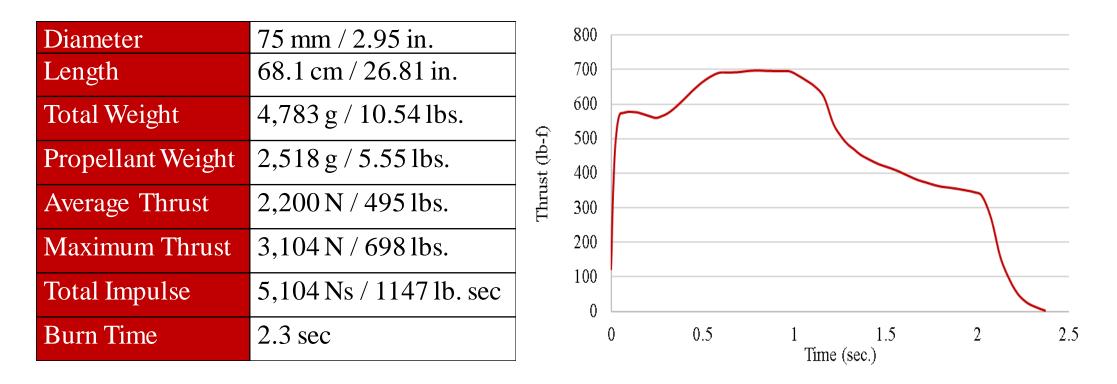
CDR Presentation Agenda

- •Launch Vehicle
- •Full Scale Test Flights
- •Variable Drag System
- Recovery
- •Safety
- •Payload
- Educational Outreach
- Budget



University of Louisville

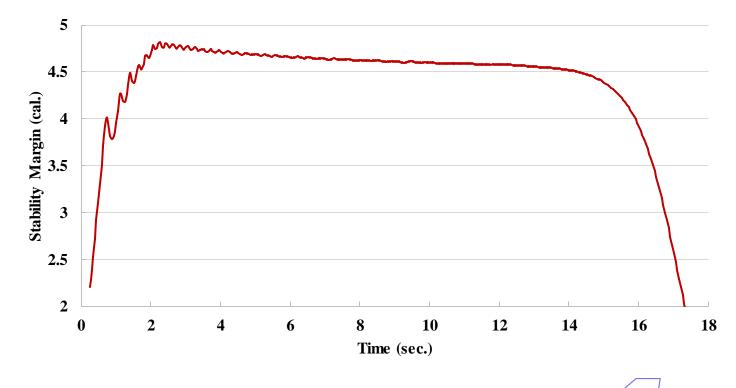
Launch Vehicle Overview

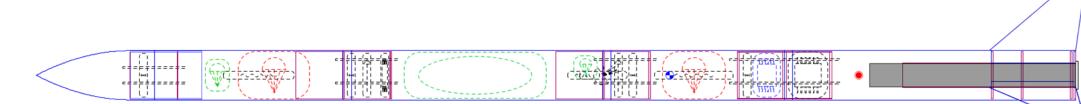

- 6.25 in. Diameter
- 4 Independent Sections
- Custom Carbon Fiber Airframe
- Custom 12in. Parabolic Nose Cone

- 3 Carbon Fiber Fins
- Variable Drag System
- Removable Fin System
- Aerotech L2200-G Motor

Final Motor Selection

- Motor selection dictated by the estimated mass of vehicle components
- Aerotech L2200-G




Flight Characteristics

Maximum Acceleration (ft./s ²)	428
Maximum Velocity (ft./s)	664
Thrust to Weight Ratio	13.9
Predicted apogee in 10mph wind (ft.)	5,363
Time to Apogee (sec.)	18
Exit Rail Velocity from a 141-inch rail (ft./s)	91.6
Center of Pressure Location at Rail Exit (in. from nose cone tip)	98.5
Center of Gravity Location at Rail Exit (in. from nose cone tip)	83.0
Stability Margin at Rail Exit (cal.)	2.48

As-Built Stability Margin

- Diameter: 6.25 in.
- CP location at rail exit: 98.5 in.
- CG location at rail exit: 83.0 in.
- Stability margin at rail exit: 2.48

University of Louisville

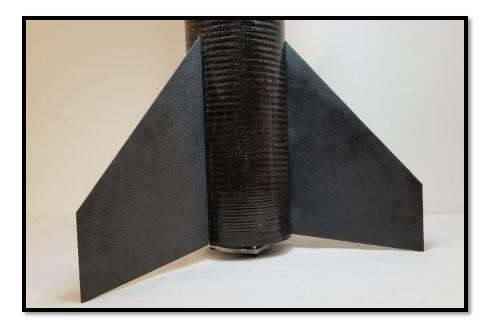

Vehicle Sections, Dimensions, and Mass


- 4 independent sections
- Dimensions dictated by payload, motor, and recovery hardware size
- Recovery bays lengthened since CDR

Section	Length (in.)	Wet Mass (lbs.)
Booster	37	26.140
Booster Recovery Bay	24	26.149
Coupler	-	1.791
Payload Bay	33	17.010
Payload Recovery Bay	30	17.818
Nose Cone	15	3.465
Total	139	49.3

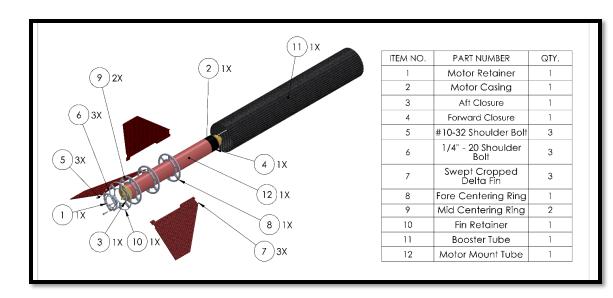
Airframe

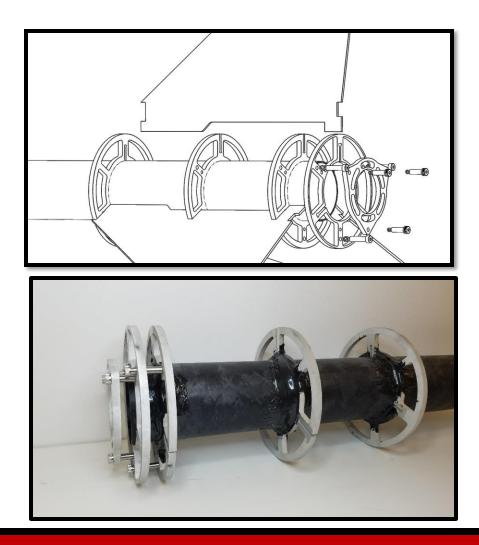
- Quasi-isotropic carbon fiber airframe material impregnated with Aeropoxy PR2032 resin and PR3660 Hardener
- Manufactured using "lay-up" method
- Curing expedited by applying heat and removing excess epoxy with heat shrink tape



University of Louisville

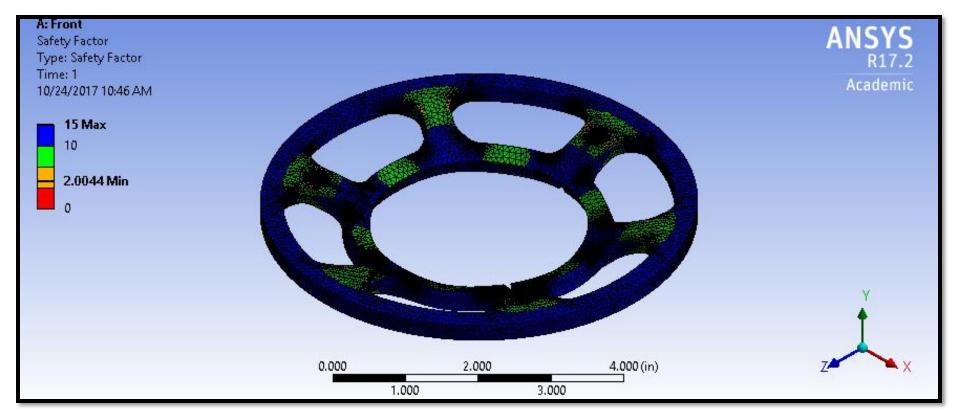
Fin Material


- Custom layup replaced with DragonPlate carbon fiber sheet due to time constraints and results of first test flight
- •DragonPlate carbon fiber sheet used on previous launch vehicle of similar size
- Material Properties:


Property	Value
Young's Modulus	5 Msi
Tensile Strength	50 Ksi

Removeable Fin System

- Quick and easy installation/removal of fins
- Adjustable fin dimensions
- Easy transportation
- Can replace a damaged fin


University of Louisville

Centering Ring Design

- 0.25 in. thick 6061-T6 aluminum
- Mass reduction slots

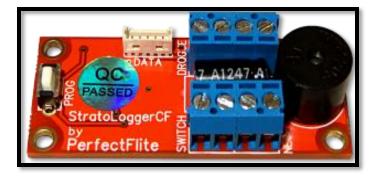
•High factor of safety

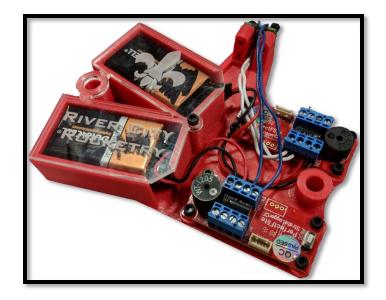
•Epoxied to motor mount tube and booster airframe with Glenmarc G5000 epoxy

University of Louisville

Nose Cone

- 12-inch long parabolic nose cone with a 3-inch transition section
- Additively manufactured from Nylon 12 using a SinterStation 2500+
- Carries a Stratologger altimeter and AIM XTRA GPS device
- Material Properties:


Mechanical Property	Value
Elongation at Break	15%
Tensile Modulus (ksi)	246
Tensile Strength (Psi)	6,815
Density (lb/in ³)	0.034



University of Louisville

Avionics

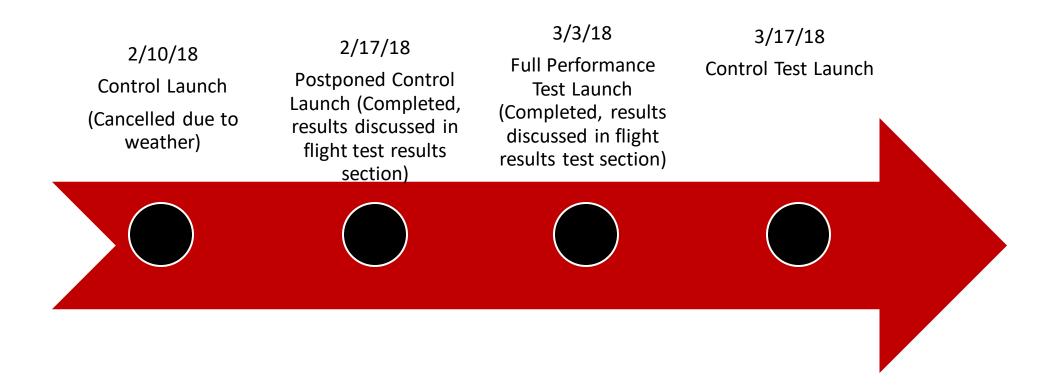
- Total of Five StratoLogger CF altimeters
 - Two carried in payload coupler for separation event
 - Two carried in coupler between booster recovery and payload bay for separation event
 - One carried in nose cone for altitude scoring

GPS Tracking

• **Booster**: SkyTraq (902-928 MHz)

• **Coupler**: Trackimo (850, 900, 1800, and 1900 MHz)

• **Payload Bay**: Eggfinder (900 MHz)


• Nose Cone: AIM XTRA (473 MHz)

Vehicle Verification Progress

- 55/74 Requirements verified
- Remaining requirements to be verified with successful full scale flight

FRR Presentation Agenda

- •Launch Vehicle
- •Full Scale Test Flights
- •Variable Drag System
- Recovery
- •Safety
- •Payload
- Educational Outreach
- •Budget

University of Louisville

Flight Results Overview

- •February 17th:
- •Catastrophic motor failure approximately two seconds after ignition
- •Apogee: 1,835ft.

•March 3rd:

- •Successful vehicle ascent
- •Failed separation at apogee led to ballistic impact
- •Apogee: 5,114ft.

University of Louisville

February 17th Flight Analysis

- Cause of motor failure determined to be a forward motor enclosure rupture
- Flames swept upward severely damaging centering rings and VDS
- All sections except booster recovered successfully

March 3rd Flight Analysis

- •Stable ascent to apogee of 5114ft. AGL
- •Minimal spinning, no fin flutter
- •Failed separation at apogee
- •Booster main separation event occurred at 500ft. AGL
- •Shock cord zippered at high velocity
- •Ballistic impact at over 400ft/s
- •Majority of flight data lost

March 3rd Flight Damage Assessment

- Catastrophic damage to nearly all vehicle components, payload, and VDS
- •Fins and motor hardware only surviving components

University of Louisville

FRR Presentation Agenda

- •Launch Vehicle
- •Variable Drag System
- Recovery
- •Safety
- Payload
- Educational Outreach
- •Budget

University of Louisville

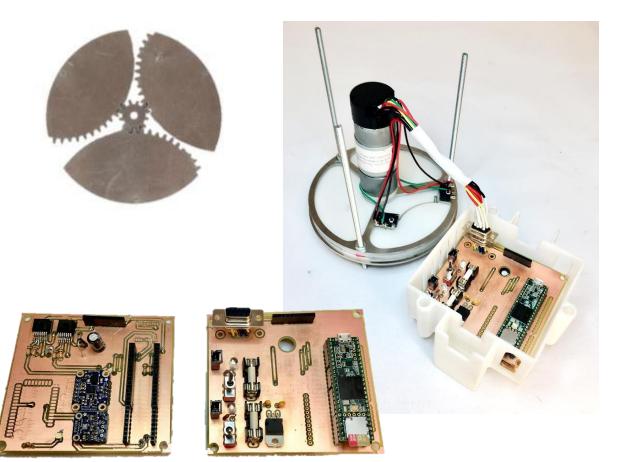
VDS Agenda

The Variable Drag System (VDS) has been fully manufactured and ground tested. All safety, integration and breaking power requirements have been demonstrated. Today, the following will be discussed.

Complete Manufactured system

Testing and Demonstration

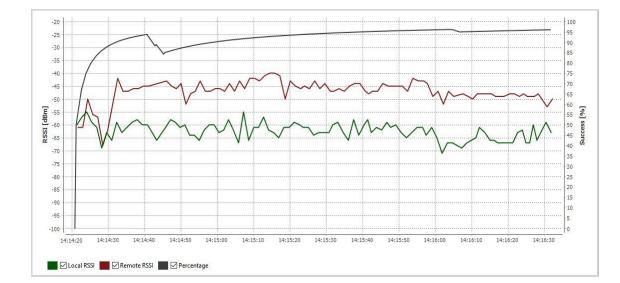
Completed Simulation


Verifications

Manufacturing

The VDS has completed full manufacturing of all components, including;

- Dual-layered FR-4 copper plated Printed Circuit boards
 - Fully assembled with Teensy 3.6, BNO055, BMP280, BTN7960, connectors, fuses, and switches.
- 3 Aluminum 6061-T6 drag blades with middle spur gear, and delrin space plates.
- Motor configuration with D-sub connection, encoders, and 2 normally open limit switches.
- 3D printed ABS electronics sled.

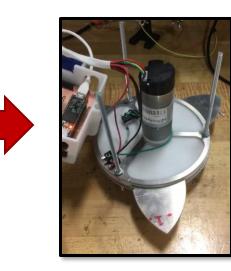


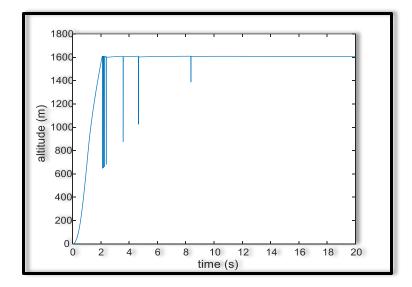
Telemetry Testing

A successful telemetry test was completed on 3-3-18.

- This test confirmed the hypothesized power and transmission ability of this unit
- The average packet delivery success rate at a distance of 1 mile was 95%.


XBee SX Pro Relevant Specifications			
Operation	_		
Supply Voltage (VDC)	2.6 to 3.6		
Current (mA) : VCC = 3.3 V	40		
Transmit Current (mA) : VCC = 3.3	900 @ 30 dBm; 640 @ 27 dBm; 330 @ 20		
V	dBm		
Parasitic Drain (μ A) : VCC = 3.3 V	2.5		
Performance			
Frequency Range (Mhz)	902 to 928 (decided autonomously on field)		
Transmit Power (dBm)	0 to 30		
Channels	10 Hopping Sequences share 50 Frequencies		
Max Data Throughput (kb/s)	120		




Blade testing

The motor controls were found to have been successful while performing a ground motor calibration test on 3-2-18.

- The graph shown displays the ability for the blades to actuate fully within 1.2 seconds.
- The blades are tested under various force and pressure conditions to ensure they are able to actuate with the anticipated are resistance on the brushless DC motor.

Verifications

All 17 VDS team derived requirements have been verified with the exception of the 2 shown in the table below;

 Due to the unexpected catastrophe at takeoff and launch anomaly, all data logging systems were destroyed. For this reason, the current data is not adequate to say that these have been verified. These will be verified before the submission of an approved re-flight via the addendum.

Requirement number	Requirement	Verification Status
V.1.1	The VDS will autonomously actuate it's drag blades, and alter the drag of the rocket to achieve an altitude of ±23 feet of the target altitude.	Test: The actuation method will be tested independently of the launch vehicle, as well as through several test launches to verify the system.
V.1.2	The VDS will telemetrically communicate its current state to a ground station during flight, without altering the path of the vehicle	Test: This requirement will be verified in sub scale flight testing. The tests will verify whether the range and data transmission rates are of acceptable standards for the needs of the VDS.

Outlook

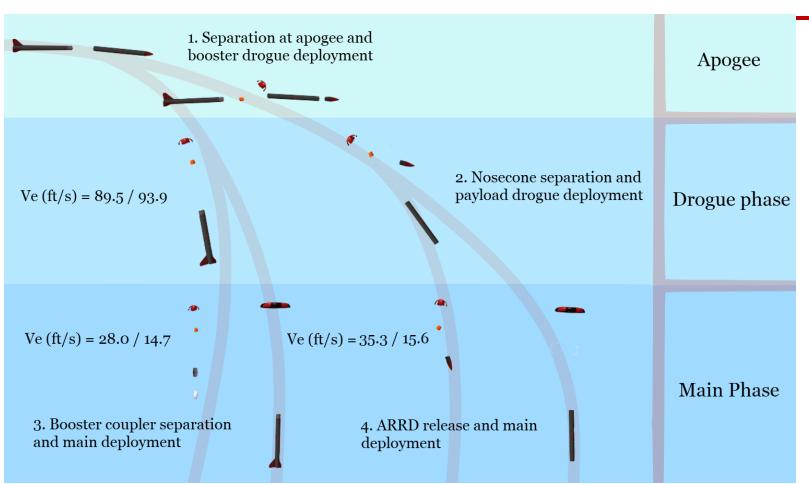
Before competition, the VDS will be completely remanufactured, and will have achieved;

- Performed a Full-Break launch with full DAQ and verification of breaking power
- Performed a Full-performance launch with Telemetry and successful DAQ.


University of Louisville

FRR Presentation Agenda

- •Launch Vehicle
- •Variable Drag System
- Recovery
- •Safety
- Payload
- Educational Outreach
- •Budget



University of Louisville

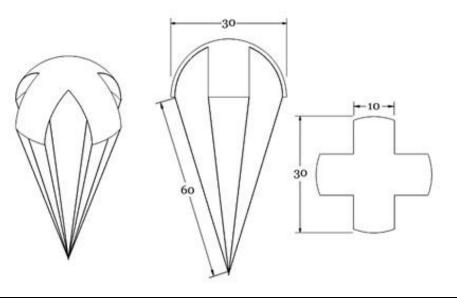
Recovery Agenda

- •Sequence of events
- •Parachute parameters
- •Rigging parameters
- •Opening force
- •Drift

Sequence of Events

Apogee: 5280 ft. Separation of midsection and nosecone after delay.

Drogue phase: Apogee – 500 ft. Booster decent at 89.5 ft./s Payload decent at 93.9 ft./s

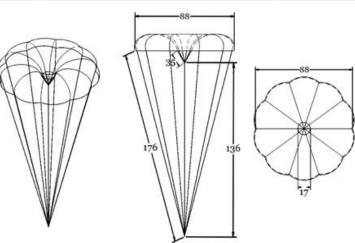

Main phase: 500 ft. Booster decent at 14.7 ft./s Payload decent at 15.6 ft./s Nosecone decent at 35.3 ft./s Coupler decent at 28.0 ft./s

University of Louisville

Drogue Parachute

Section	Mass (lbs.)	Terminal Velocity (ft./s)	Kinetic Energy (ftlbs.)	Size Boundaries (in.)	Size (in.)
Payload	20.24	89.5	238.3	25 - 35	30
Booster	21.27	93.9	169.9	16 - 36	30

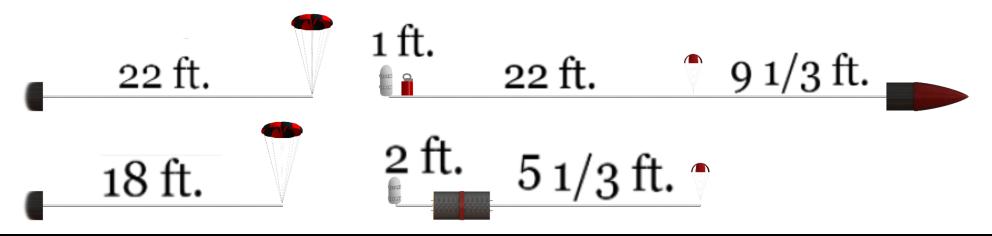
- Cruciform design
- Designed for KE and Drift
- Both sections have same diameter for ease of integration
- Laser cut single panel



Main Parachute

Section	Mass (lbs.)	Terminal Velocity (ft./s)	Kinetic Energy (ftlbs.)	Size (in.)
Payload	17.09	15.6	65	88
Booster	19.29	14.7	65	99
Coupler	1.98	28.0	17.47	30
Nosecone	3.14	35.3	43.8	30

- Toroidal design
- Laser cut gores sewn in house
- Drogues act as main for coupler and nosecone



University of Louisville

Rigging Parameters

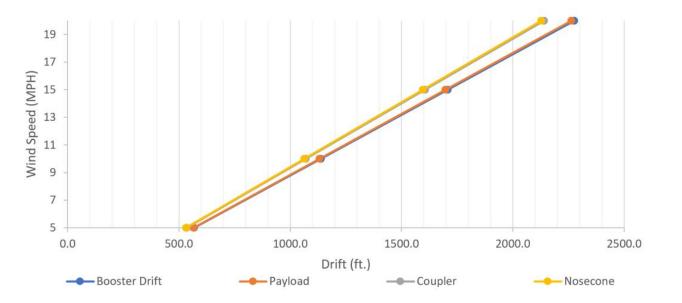
Linkage	Material	Length (ft.)	Break Strength (lbs-f)
Nosecone - Drogue	9/16 in. Tubular Nylon Shock Cord	9 1/3	1500
Drogue - ARRD	9/16 in. Tubular Nylon Shock Cord	22	1500
ARRD - Deployment Bag	Paracord	1	320
Payload Main - Bulkplate	9/16 in. Tubular Nylon Shock Cord	22	1500
Drogue - Coupler	9/16 in. Tubular Nylon Shock Cord	5 1/3	1500
Coupler – Deployment Bag	Paracord	2	320
Booster Main - Bulkplate	9/16 in. Tubular Nylon Shock Cord	18	1500

Opening Force

Section	Opening force (Lbsf)	Acceleration (ft/s/s)	Factor of safety
P. Drogue	1.4	0.4	>10
P. Main	323.1	608.4	3.7
B. Drogue	6.4	3.2	>10
B. Main	411.8	686.9	2.9

Opening forces are found using

$$F_x = \frac{(C_D S)_P \rho v^2 C_x X_1}{2}$$

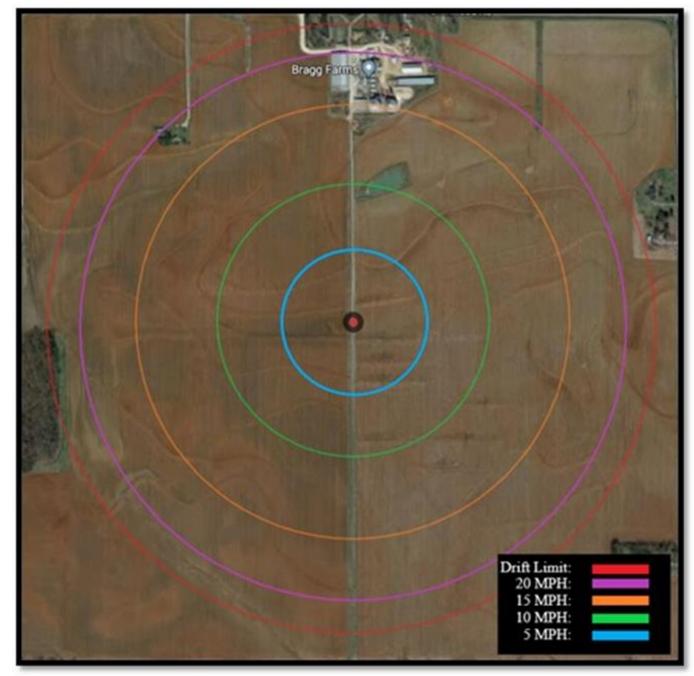

using data from subscale flights and scaled to the full scale launch vehicle

- Drogue opening force relatively small due to low opening speed
- Quick link is lowest rated linkage at 1200 LBS.
- Lowest factor of safety of 2.9

Drift

МРН	ft./s	Booster (ft.)	Payload (ft.)	Coupler (ft.)	Nosecone (ft.)
5	7.3	622.6	604.8	504.3	474.3
10	14.7	1245.2	1209.6	1008.7	948.6
15	22.0	1867.8	1814.4	1513.0	1423.0
20	29.3	2275.3	2204.1	2017.4	1897.3

- Calculated mathematically using decent times
- Drogue parachutes designed to not exceed drift restriction
- Booster drifts furthest under worst case 20 mph winds due to slow decent under main



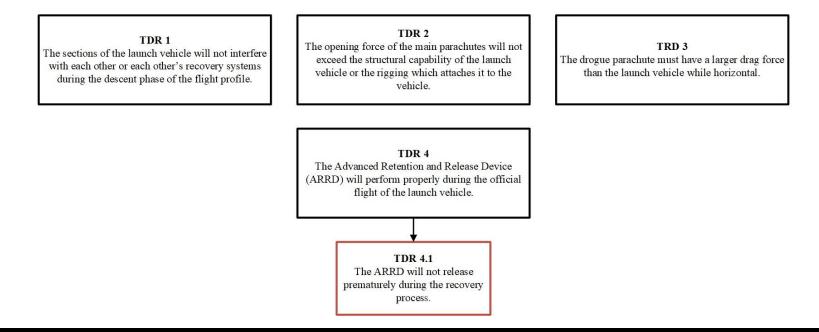
University of Louisville

Visualized drift and Mission Elapsed Time

Ascent: 17.8s Drogue decent: 53s Main decent: 24s Total: 94.8s

University of Louisville

Recovery Test Campaign


- •Protection of payload from BP separation charges
- Fire retardant Nomex cloth square to contain BP residue and reduce concussive forces
- •Separation pressure within the vehicle unchanged

Control		Payload	Payload	Full	
recovery flight		 protection dummy test 	protection test	recovery system test	
 2/10/18		2/17/18	 2/24/18	 3/10/18	

Requirement Verifications

- 17/21 Requirements verified
- Remaining requirements scheduled to be verified during full scale campaign
- All requirements will be verified by FRR
- •All tests are based upon SOW or team derived requirements

FRR Presentation Agenda

- •Launch Vehicle
- •Variable Drag System
- Recovery
- •Safety
- Payload
- Educational Outreach
- •Budget

University of Louisville

Hazard Risk Assessments

Risk Level and Approval Matrix							
Risk Level	Level of Approval Required						
High Risk	Highly undesirable. Documented approval of NASA SL team, RSO, team						
rigii Kisk	sub-team leads, team safety officer, and team co-captains required.						
Moderate Risk	Undesirable. Documented approval of all team sub-team leads, team safety						
Widderate Risk	officer, and team co-captains required.						
Low Risk	Acceptable. Documented approval from team sub-team lead overseeing the						
LOW KISK	component's development.						
Minimal Risk	Acceptable. Documented approval is not required. Sub-team lead will ensure						
Willinia Kisk	that sub-team members are familiar with the hazard.						

- Mitigations and Verifications have been finalized
- Approval from sub-team leads, safety officer, and co-captains obtained for the necessary risks.
- Updated personal hazards based on full scale preparation observations

Launch Operations

- Additional materials such as sunscreen
- Additional preparations like checking fire extinguisher level

Full Scale Launch Safety Checklists

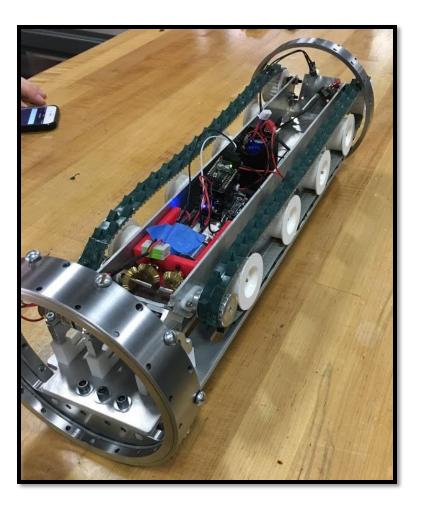
The following checklists were written to prepare the team for a safe and successful launch. Each checklist includes the following features to ensure that assemblers are well equipped, safe, and able to recognize all existing hazards:

- · Required hardware, equipment, and PPE for each process
- Labels to indicate explicit safety precautions:

AUTION

- I -label used to identify where PPE must be used
- -label used to signify importance of procedure by clearly identifying a
 potential failure and the result if not completed correctly
- ▲ **DANGER** -label to signal the use of explosives and to indicate specific steps that should be taken to ensure safety

FRR Presentation Agenda


- •Launch Vehicle
- •Variable Drag System
- Recovery
- •Subscale Vehicle
- •Safety
- Payload
- Educational Outreach
- •Budget

University of Louisville

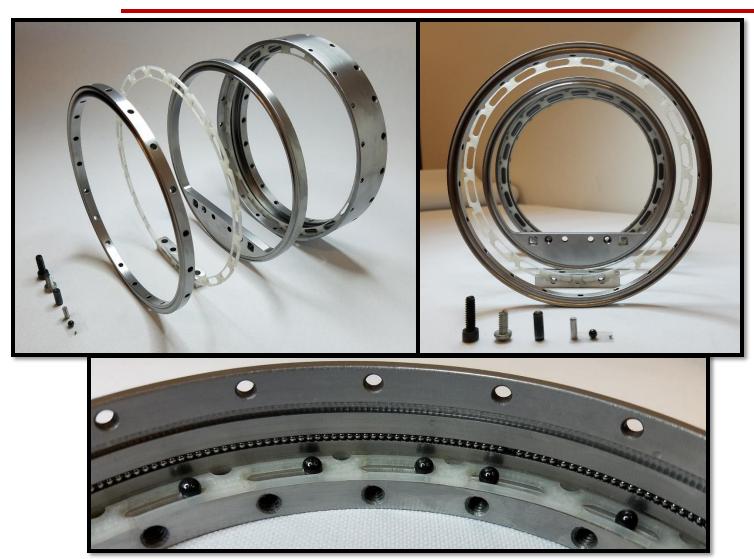
Payload Agenda

- •Overview of Constructed Payload
- Integration
- Interfaces with Ground Systems
- •Summary of Requirements Verification

Dimensional Overview

ROCS/RLM						
Dimension	<u>Value</u>					
Diameter	Ø6.0 in.					
Length	17.9 in.					
Weight	4.495 lbs.					
ROVER						
Dimension	<u>Value</u>					
Stowed Length x Width x Height	16.82 x 4.73 x 3.73 in.					
Deployed Length x Width x Height	16.82 x 4.73 x 4.05 in.					
Weight	3.20 lbs.					
PAYLOAD						
Total Weight (including DTS)	7.695 lbs.					

Rover Orientation Correction System (ROCS)


•Supports rover throughout flight

•Ensures upright orientation of the rover at landing

•Quick integration and removal

University of Louisville

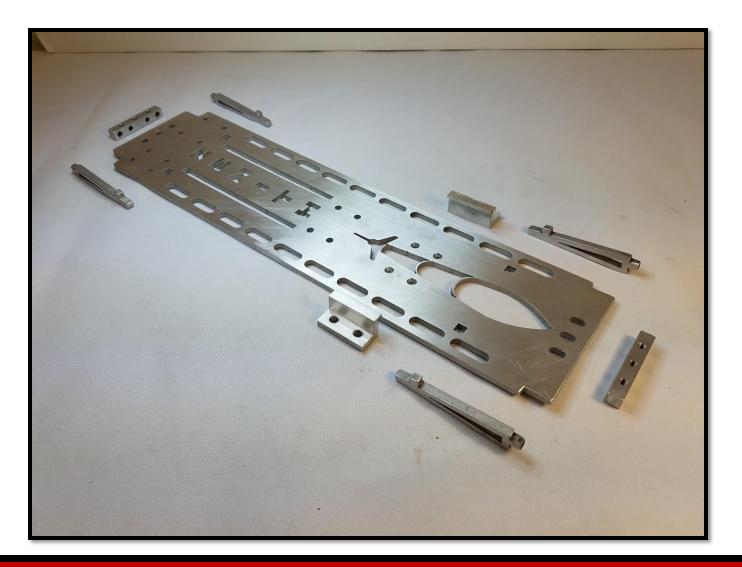
•Machined and assembled by team member

Equipment used:
CNC Vertical Milling Center
CNC Horizontal Table Grinder
Manual Lathe
Horizontal Ban Saw
3D Printer

•Ball bearings in each raceway

University of Louisville

- •Similar machining process to AETB
- •Ball bearings filling each raceway
- •Eliminate possibility of bearing ring bottoming out

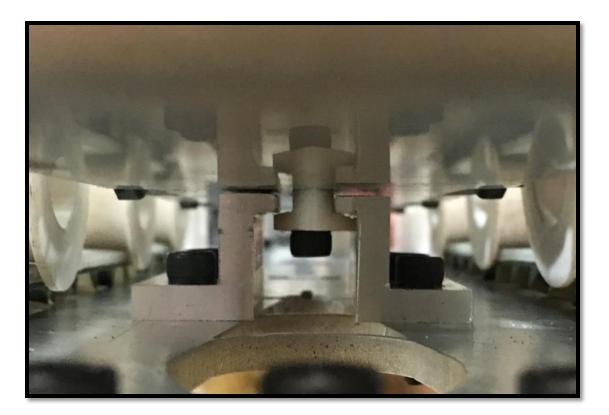


University of Louisville

•Bridging sled weight reduction

•T-Slot moved forward of rover CG

•Crescent mounting brackets and support ribs securely interface sled with bearings



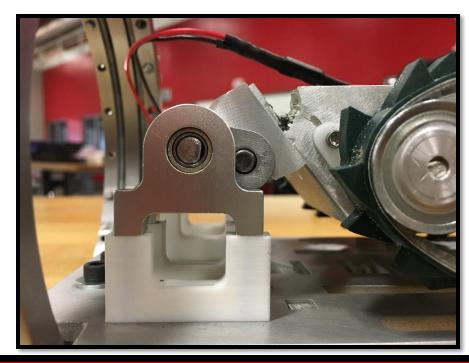
University of Louisville

•Securely restricts rover to bridging sled

•Adequate clearance allowing driving

•Slot successfully retained rover during first full-scale flight throughout

•Successfully orientated rover during full-scale flight #1

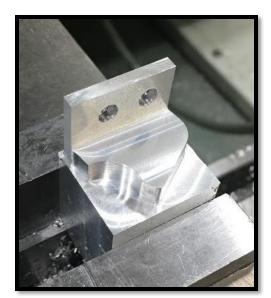

University of Louisville


Rover Locking Mechanism (RLM)

•Tested during full-scale launch #1

•Successfully retained the payload

• Raised with spacers

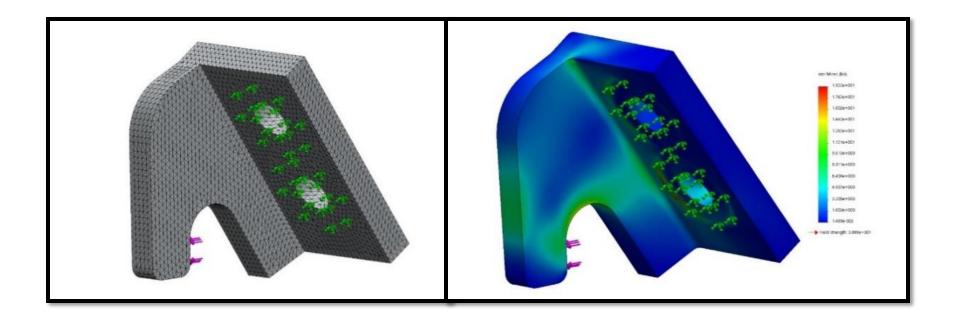

University of Louisville

RLM Latch

•Moved up on Rover Body Structure

•New design using thicker aluminum

•Part was machined using CNC mill



University of Louisville

RLM Latch Cont...

•FEA confirms factor of safety of 2.1

•Part did not yield during second full-scale flight

University of Louisville

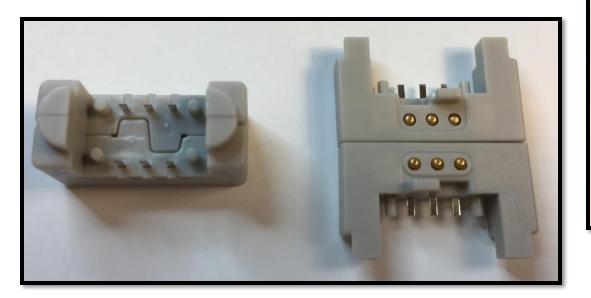
Rover Locking Mechanism (RLM) Cont....

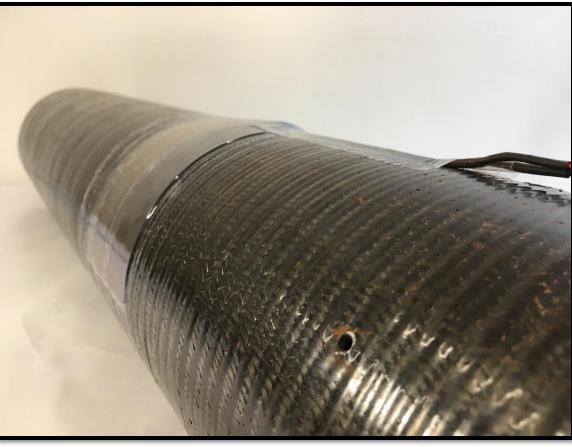
University of Louisville

Deployment Trigger System (DTS)

•Unique packet of data: "RCRdeploy"

•All requirements of the system have been successfully verified

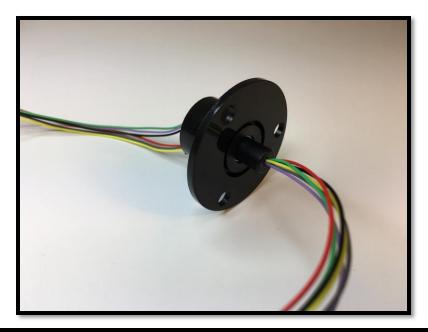

University of Louisville

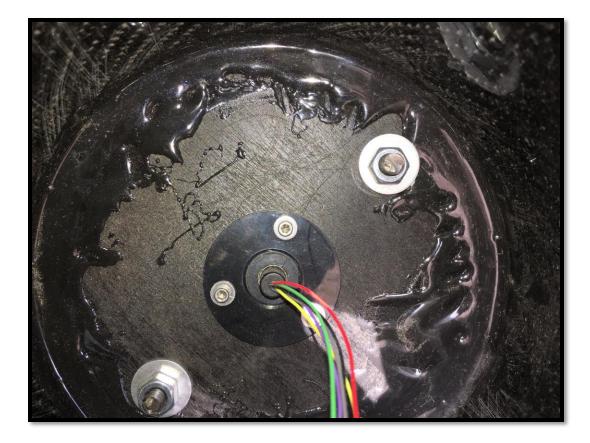

DTS Receiver Side

•Low profile on airframe

•Withstood 2 flights and remains functional

•Magnetic Connectors to interface with CES

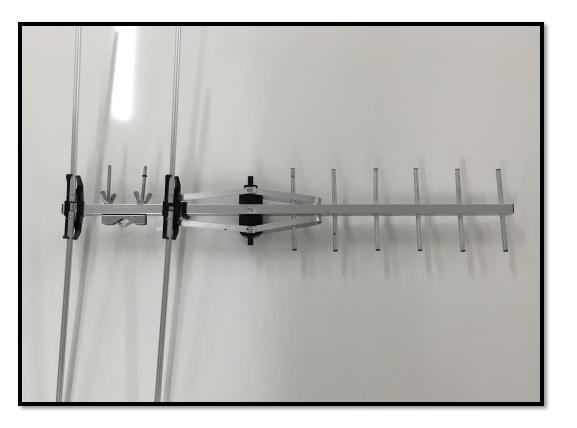



University of Louisville

DTS Slip Ring Flange

•Bolted to payload recovery bay bulk plate

•Signal fidelity through flange confirmed

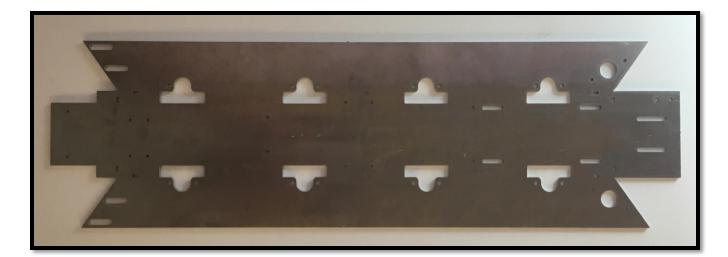

University of Louisville

DTS Transmitter Side

•Yagi antenna tested and functionality confirmed

•Frequency: 433.4 MHz (adjustable if need be)

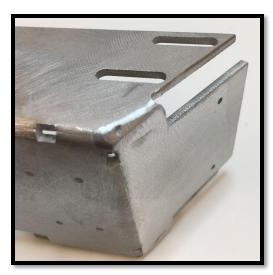
•Power Level: 100 mW


University of Louisville

Rover Body Structures (RBS)

•Bending guide holes cut into RBS

•Water jet for accuracy

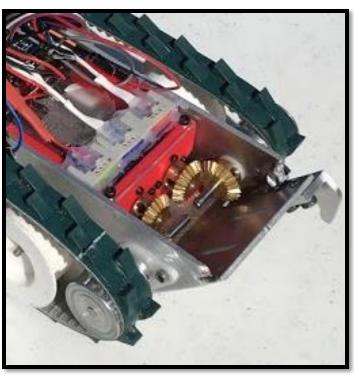

University of Louisville

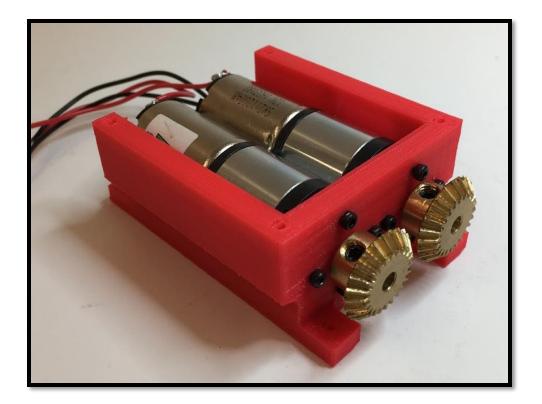
RBS Cont...


•Bent using manual finger break

•Corners welded for strength

•Seams grinded and smoothed

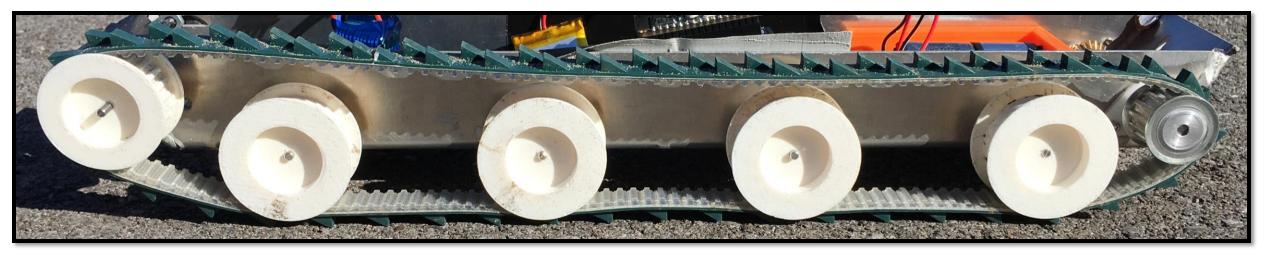



University of Louisville

Rover Drive System (RDS)

•2 main drive motors

•90 degree bevel gears



University of Louisville

RDS Pulleys and Tread

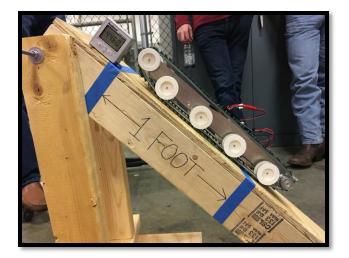
•Front wheels contact any obstacle first

•Sawtooth treads maintain large surface contact

University of Louisville

Rover Drive System (RDS) Cont...

<u>DRY</u>

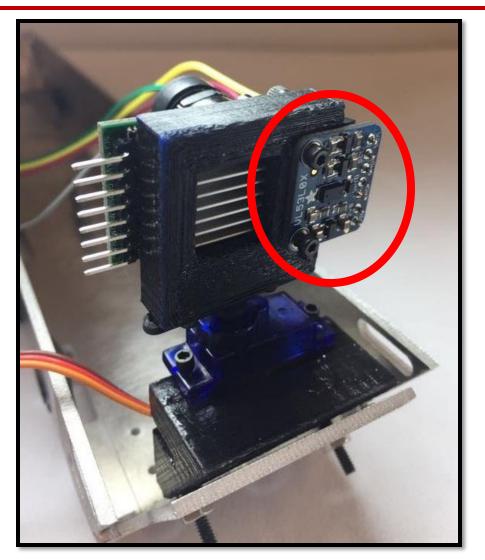


University of Louisville

Rover Drive System (RDS) Cont....

•Successfully surmounted slope of 44.60°

•Successfully surmounted 3.25 in. vertical step

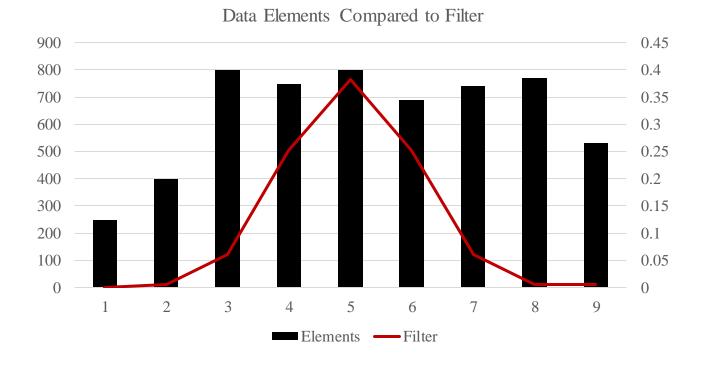


University of Louisville

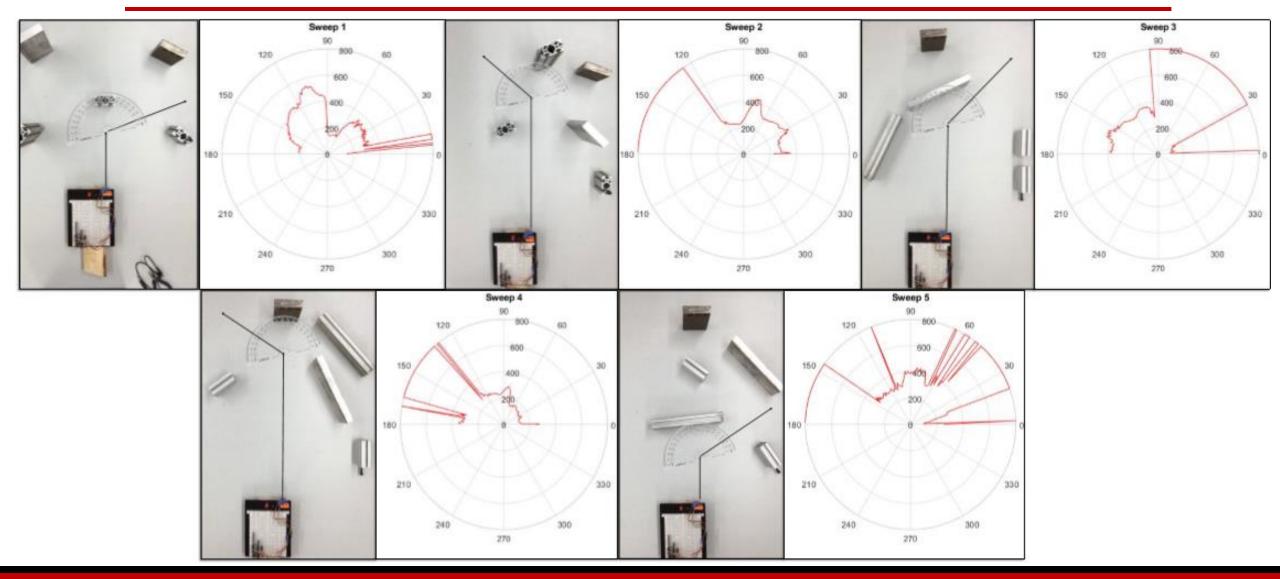
Obstacle Avoidance System (OAS)

•Field of view increased to 180 degrees

•All requirements and testing has been successfully completed



University of Louisville


•180 data elements taken during sweep

•Gaussian filter applied to elements

•Prioritizes middle elements

OAS Path Finding

University of Louisville

OAS BP Coverage Test Results

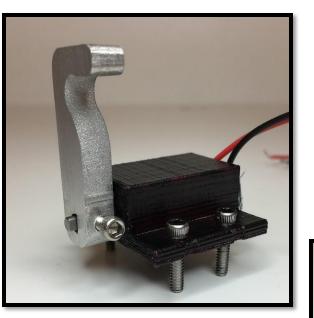
Majority of black powder coated RBS, not sensor mount

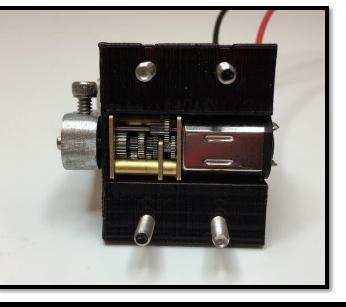
University of Louisville

Solar Array System (SAS)

•Actuation via spring hinge confirmed

•Tower remains upright

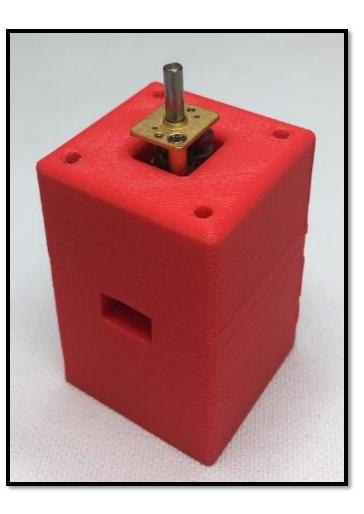



Stowed Deployed

University of Louisville

SAS Cont...

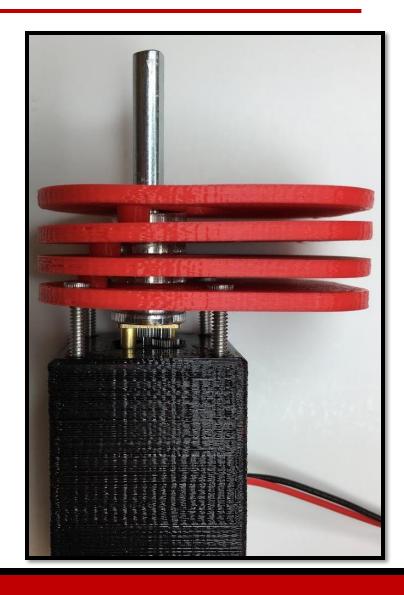
- •Tower unlock motor/latch operation confirmed
- •Powered by controller battery through NMOS


University of Louisville

SAS Cont...

•Solar Array Deployment Motor fitted with spacers and extension

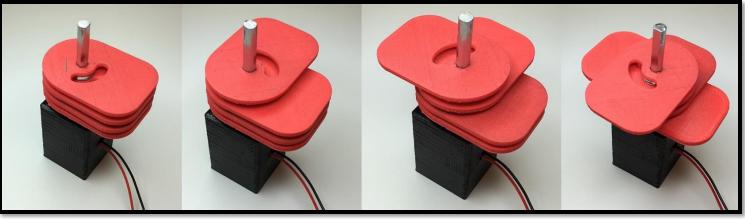
•3D printed tower base/motor housing


University of Louisville

•3D printed using PLA

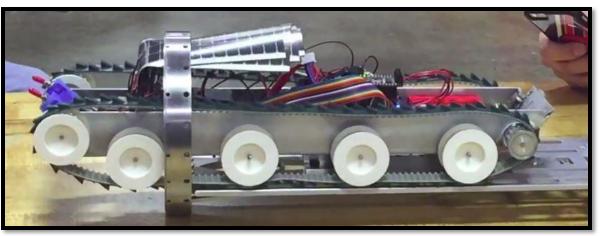
•Center hole for mounting to deployment motor

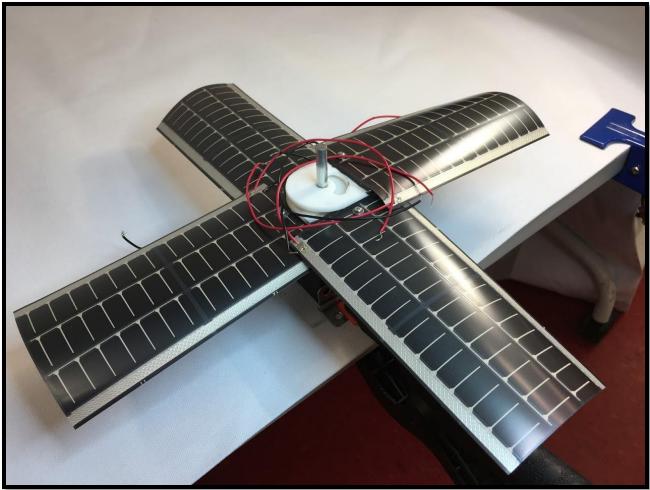




University of Louisville

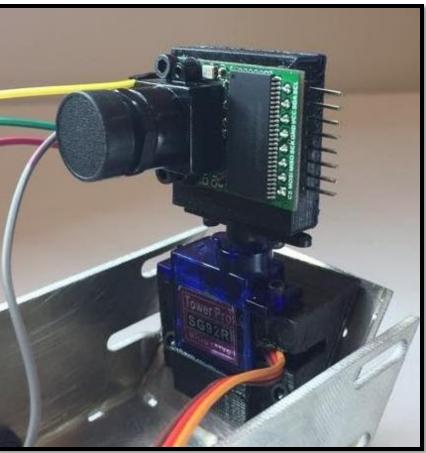
- •Towing peg protrudes from bottom of support arm
- •Slot for towing peg
- •Each arm triggers the next arms deployment





University of Louisville

- •Panels remain folded and bent backward in stowed configuration
- •Panels unfold after reaching at least 5 feet


University of Louisville

Surface Imaging System (SIS)

•Field of view increased to 180 degrees

•Solar trigger successfully tested for 3 panels

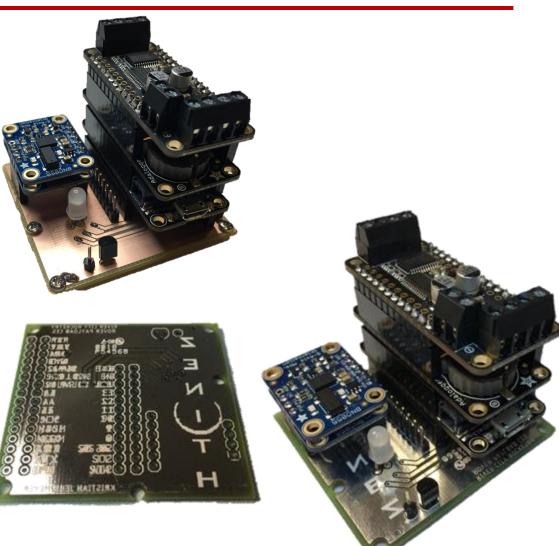
University of Louisville

Surface Imaging System (SIS) Cont...

•Imaging rate of 7.4 images per minute at 1280 x 920

Pic #	Time Stamp (s)	Capture Time (s)	SaveTime (s)	Time Stamp Difference
1	0.00	0.174	3.095	
2	8.31	0.177	3.025	8.31
3	16.56	0.245	3.093	8.25
		•		
		•		
		•		
35	278.68	0.195	2.697	278.68
36	286.62	0.188	2.691	7.94
37	294.55	0.194	2.708	7.93
AVG.		0.182	2.945	8.182

University of Louisville


Control Electronics System (CES)

•Printed Circuit Board prototype

•Electrical testing conducted

•Functional testing conducted

•Final PCB manufactured by Advanced Circuits

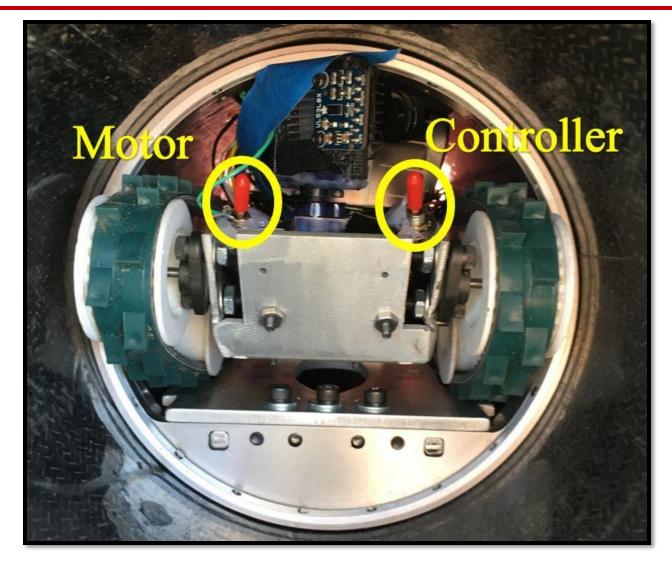
University of Louisville

Control Electronics System (CES) Cont...

•Flight ready software has been completed

•Function based

Robust safety measures


```
void loop (void)
                                ************Bedin Flight*
  DTSphase();
  bool orientation = OrientationCheck();
  if (!orientation)
    error(F("Orientation Check Failed"));
  UnlockRLM();
  ExitBay();
  DrivePhase();
  DeployArray();
  CameraPhase();
```

Control Electronics System (CES) Cont...

• Power switches added

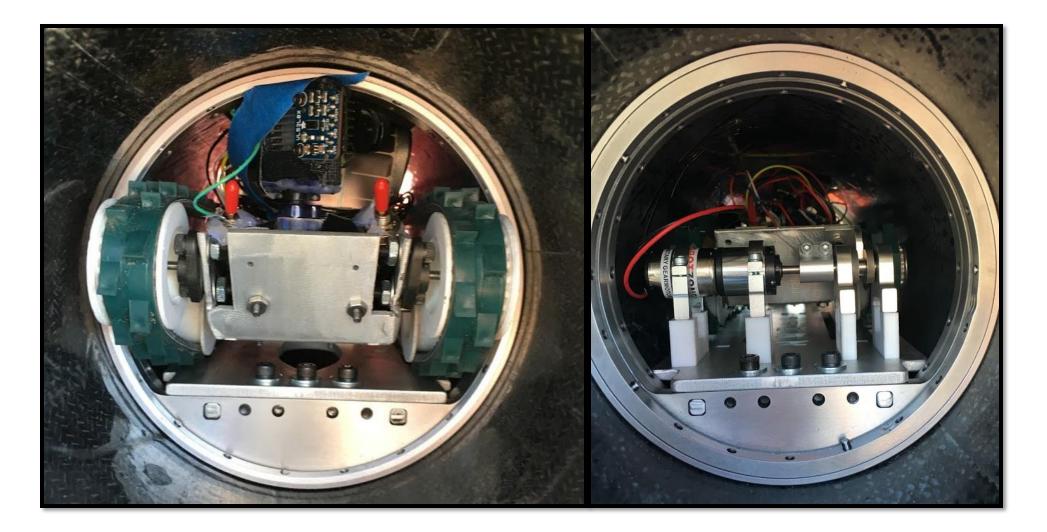
•Maximize battery life

University of Louisville

Integration

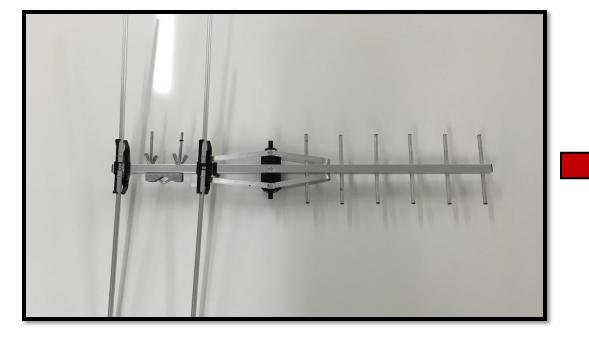
Integration

•Button head cap screws secure ROCS to internal structure of airframe


•Integration of ROCS tested at less than 5 minutes

•RLM Secures rover to the ROCS throughout the flight

University of Louisville


Integration


University of Louisville

Interfaces with Ground Systems

Transmitter

433.4 MHz, 100 mW

University of Louisville

Requirement Verifications

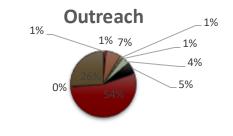
- 33/41 requirements have been successfully verified
- All other requirements have been postponed and rescheduled

TEST 2					
TRIAL #	RULER DISTANCE (in.)	LIDAR DISTANCE (in.)	DEVIATION (in.)	%ERROR	ACCURACY
		Short Range			+/- 0.128 in.
1	5.00	4.96	0.04	0.80%	
2	7.00	7.13	0.13	1.86%	
3	9.00	9.02	0.02	0.22%	
4	11.00	11.18	0.18	1.64%	
5	13.00	13.27	0.27	2.08%	
		Long Range			+/- 1.574 in.
6	40.00	41.46	1.46	3.65%	
7	38.00	39.72	1.72	4.53%	
8	36.00	37.56	1.56	4.33%	
9	34.00	35.67	1.67	4.91%	
10	32.00	33.46	1.46	4.56%	

Figure: Example verification data

FRR Presentation Agenda

- •Launch Vehicle
- •Variable Drag System
- Recovery
- •Subscale Vehicle
- •Safety
- Payload
- Educational Outreach
- •Budget



University of Louisville

Educational Outreach

Outreach Event	Number
First Lego League	25
Louisville Area Math Circle	21
Mini Maker Faire	200
Cardinal Preview Day	30
MathMovesU	18
Farmer Elementary STEM Expo	100
Cochran Elementary Science Expo	155
Blast off the Noon year	1488
Kentucky Aerospace Day	15
Engineering Day at the Capital	715
Engineering Expo with KY Science Center	550
Engineering Expo	375
Total	3692

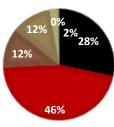
First Lego League 25	Louisville Area Math Circle 21			
MiniMaker Faire 200	Cardinal Preview Day 30			
MathMovesU 18	Farmer Elementary STEM Expo 100			
■ Cochran Elementary Science Expo 155 ■ Blast off the Noon year 1488				
Kentucky Aerospace Day 15	Engineering Day at the Capital 715			

University of Louisville

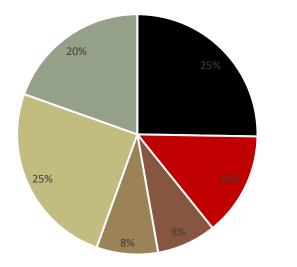
FRR Presentation Agenda

- •Launch Vehicle
- •Variable Drag System
- Recovery
- •Subscale Vehicle
- •Safety
- Payload
- Educational Outreach
- Budget

Budget


INCOME

■ Remaining Balance ■ Alumni Donations


ions 📕 NASA Prize Money

Speed School Money Raytheon

Misc. Donations

Expense Report

- General Team \$5,167.79
- Payload \$2,852.07
- Recovery \$1,634.53
- VDS \$1,694.33
- Vehicle \$5,098.00
- Science Center (Projected) \$4,000.00

		Speed School Money		\$	5,000.00
		Raytheon		\$	1,000.00
		Misc. Donations		\$	200.00
		Fundraiser			
		Total		\$ 43,500.00	
Bu	dget Results				
Bu	<mark>dget Results</mark> Budgetted Cost	Real Cost	Percen	t Di	fference
Bu		Real Cost \$	Percen	t Di	fference
Bu	Budgetted Cost		Percen	t Di	fference 244.51%
Bu	Budgetted Cost \$	\$	Percen	t Di	
Bu	Budgetted Cost \$ (17,803.41)	\$ (5,167.79)	Percen	t Di	
Bu	Budgetted Cost \$ (17,803.41) \$	\$ (5,167.79) \$	Percen	t Di	244.51%
Bu	Budgetted Cost \$ (17,803.41) \$ (4,406.80)	\$ (5,167.79) \$ (2,907.95)	Percen	t Di	244.51%
Bu	Budgetted Cost \$ (17,803.41) \$ (4,406.80) \$	\$ (5,167.79) \$ (2,907.95) \$	Percen	t Di	244.51% 51.54%

(1,694.33)

(5,310.51)

(16, 715.11)

\$

\$

(2,268.56)

(6,542.18)

(32, 473.95)

\$

\$

Source

Remaining Balance

Alumni Donations

NASA Prize Money \$ 5,000.00

Flight Readiness Review	
i light headiness heview	

Category

Payload

Recovery

VDS

Vehicle

Total

General Team

University of Louisville

Amount

\$ 12,300.00

\$ 20,000.00

33.89%

23.19%

94.28%

University of Louisville