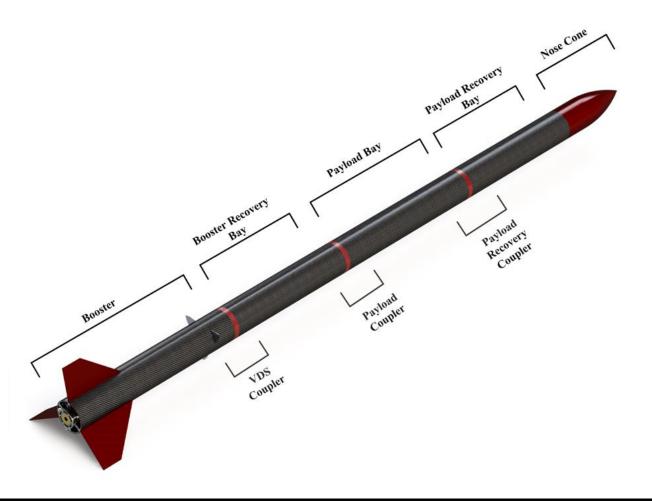


# River City Rocketry


PRELIMINARY DESIGN REVIEW(PDR) PRESENTATION 2017-2018

### PDR Presentation Agenda

- Launch Vehicle
- •Variable Drag System
- Recovery
- •Safety
- •Payload
- •Educational Outreach
- •Budget

### Launch Vehicle Overview

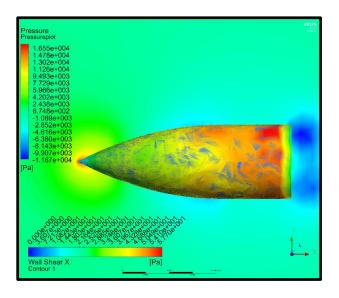
- 6.25 in. Diameter, 145 in. Long
- •12 in. Parabolic Nose Cone
- •Aerotech L2200-G Motor
- •Variable Drag System
- •Three Swept Cropped Delta Fins
- •Removable Fin System



# Airframe Material

- •A&P Technology QISO quasi-isotropic carbon fiber fabric
  - Lightweight
  - Strong
  - Cost effective
  - Controllable manufacturing process




### **University of Louisville**

|                               | Airframe Material Trade Study |            |       |                                |       |                                               |       |          |       |  |
|-------------------------------|-------------------------------|------------|-------|--------------------------------|-------|-----------------------------------------------|-------|----------|-------|--|
| Options                       |                               | Fiberglass |       | Filament Wound<br>Carbon fiber |       | A&P Technology<br>QISO Carbon<br>Fiber Fabric |       | BlueTube |       |  |
| Mandatory<br>Requirements     |                               |            |       |                                |       |                                               |       |          |       |  |
| Support loads during lift off |                               | YES        |       | YES                            |       | YES                                           |       | YES      |       |  |
| Impact resistant              | Impact resistant              |            | YES   |                                | YES   |                                               | YES   |          | S     |  |
| Wants (0-10)                  | Weights                       | Value      | Score | Value                          | Score | Value                                         | Score | Value    | Score |  |
| Weight                        | 35.00%                        | 4          | 1.4   | 7                              | 2.45  | 8                                             | 2.8   | 8        | 2.8   |  |
| Strength                      | 35.00%                        | 8          | 2.8   | 9                              | 3.15  | 9                                             | 3.15  | 5        | 1.75  |  |
| Availability 20.00%           |                               | 8          | 1.6   | 7                              | 1.4   | 9                                             | 1.8   | 7        | 1.4   |  |
| Cost 10.00%                   |                               | 7 0.7      |       | 3 0.3                          |       | 9 0.9                                         |       | 8        | 0.8   |  |
| Total Score                   |                               | 6.         | 6.5   |                                | 7.3   |                                               | 8.65  |          | 6.75  |  |

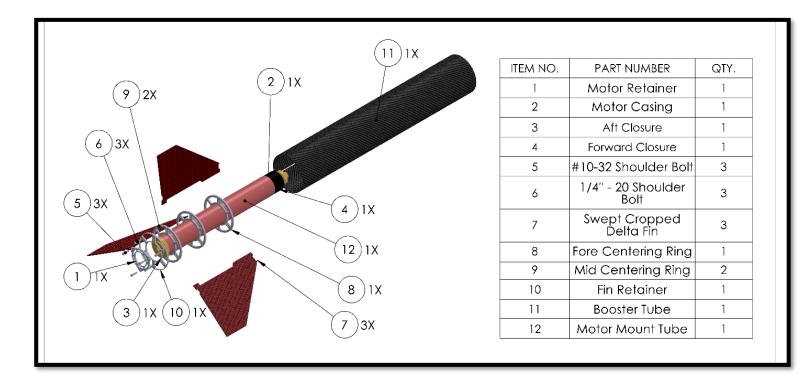
### University of Louisville

### Nose Cone Design

- •CFD simulations were performed on the Conical, ½ Power series, LD Haack, and Parabolic nose cone designs.
- •12" Parabolic nose cone design was chosen for use due to it's low coefficient of drag, mass, and adequate internal volume .
- •Will be constructed from carbon fiber fabric using a positive and negative mold.



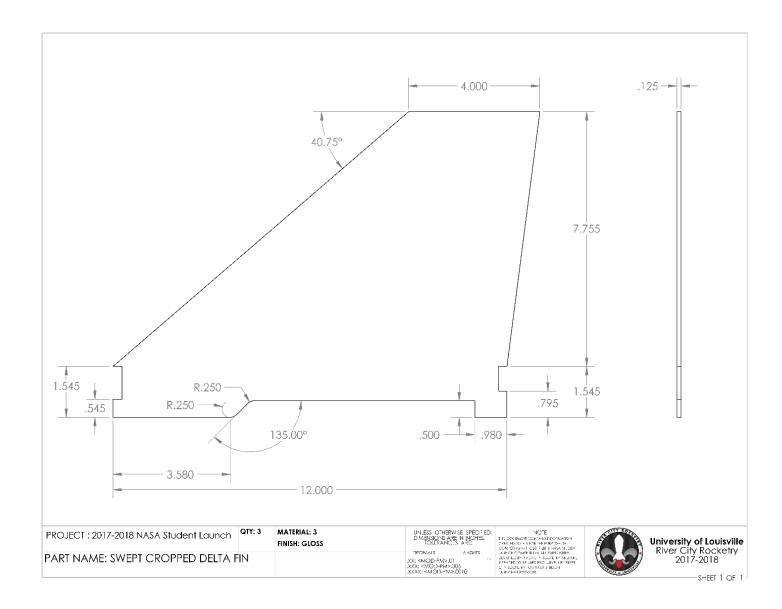



#### **University of Louisville**

|                                           | Nose Cone Design Trade Study       |                |       |                           |       |               |       |                    |       |  |  |
|-------------------------------------------|------------------------------------|----------------|-------|---------------------------|-------|---------------|-------|--------------------|-------|--|--|
| Options                                   |                                    | 12in. LD Haack |       | 12in. 1/2 Power<br>Series |       | 12in. Conical |       | 12in.<br>Parabolic |       |  |  |
| Mandatory Requiremen                      | ts                                 |                | -     |                           |       |               |       |                    |       |  |  |
| Overall length does not exceed 12 inches. |                                    | Y              | ES    | Y                         | YES   |               | YES   |                    | YES   |  |  |
| Coefficient of Drag less th               | Coefficient of Drag less than 0.5. |                | YES   |                           | YES   |               | YES   |                    | ES    |  |  |
| Wants                                     | Weights                            | Value          | Score | Value                     | Score | Value         | Score | Value              | Score |  |  |
| Coefficient of Drag (0-                   |                                    |                |       |                           |       |               |       |                    |       |  |  |
| 10)                                       | 35.00%                             | 8              | 2.8   | 7                         | 2.45  | 5             | 1.75  | 9                  | 3.15  |  |  |
| Mass (0-10)                               | 30.00%                             | 6              | 1.8   | 5                         | 1.5   | 7             | 2.1   | 5                  | 1.5   |  |  |
| Manufacturability (0-10) 20.00%           |                                    | 6              | 1.2   | 5                         | 1     | 7             | 1.4   | 6                  | 1.2   |  |  |
| Internal Volume 10.00%                    |                                    | 8              | 0.8   | 8                         | 0.8   | б             | 0.6   | 9                  | 0.9   |  |  |
| Total Score                               | 8                                  | 6.6            |       | 5.75                      |       | 5.85          |       | 6.75               |       |  |  |

### University of Louisville

### Removable Fin System


- •Quick and easy installation/removal of fins
- •Accurate fin mounting
- •Adjustable fin dimensions
- Easy transportation
- •Can replace a damaged fin



#### **University of Louisville**

| Fin Mounting System            |                      |      |                   |             |            |         |       |  |  |  |
|--------------------------------|----------------------|------|-------------------|-------------|------------|---------|-------|--|--|--|
| Options                        |                      | -    | hrough the<br>all | Removable   | Fin System | Fin Can |       |  |  |  |
| Mandatory Requirements         |                      |      |                   |             |            |         |       |  |  |  |
| Ability to replace broken fins |                      | N    | Ő                 | YI          | ES         | YES     |       |  |  |  |
| Wants (0-10)                   | Wants (0-10) Weights |      | Score             | Value Score |            | Value   | Score |  |  |  |
| Fin rigidity                   | 40.00%               | 7    | 2.8               | 7           | 2.8        | 8       | 3.2   |  |  |  |
| Weight                         | 25.00%               | 9    | 2.25              | 7           | 1.75       | 5       | 1.25  |  |  |  |
| Cost                           | 5.00%                | 8    | 0.4               | 5           | 0.25       | 3       | 0.15  |  |  |  |
| Durability 30.00%              |                      | 6    | 1.8               | 8           | 2.4        | 7       | 2.1   |  |  |  |
| Total Score                    |                      | 7.25 |                   | 7           | .2         | 6.7     |       |  |  |  |

### University of Louisville



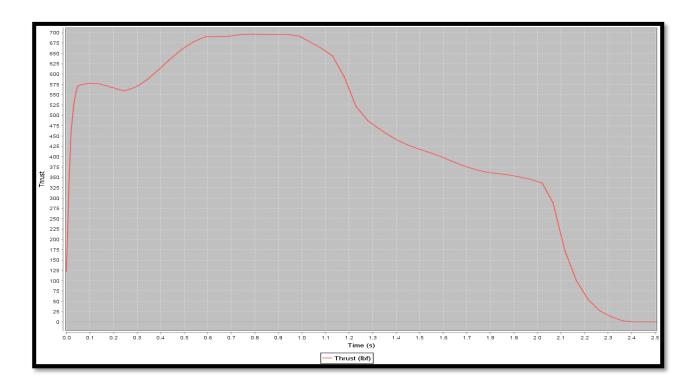
# Fin Design

•Three swept cropped delta fins

•Cut from 0.125 in. thick carbon fiber

• Researching manufacturing carbon fiber sheet in house

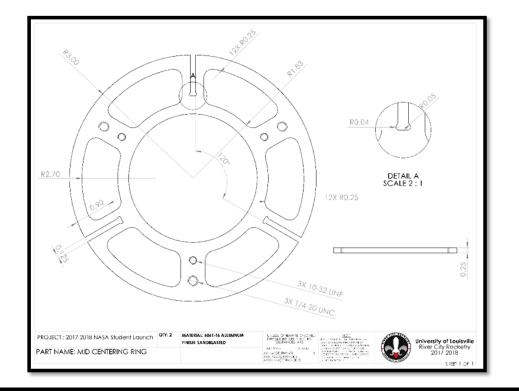
| Fin Material           |                      |       |       |        |       |              |       |  |  |  |
|------------------------|----------------------|-------|-------|--------|-------|--------------|-------|--|--|--|
| Options                |                      | Plywo | bod   | Fiberg | glass | Carbon Fiber |       |  |  |  |
| Mandatory Requirements |                      |       |       |        |       |              |       |  |  |  |
| Impact resistant       |                      | YE    | S     | YE     | S     | YI           | ES    |  |  |  |
| Compatible with RFS    |                      | NC    |       | YE     | S     | YI           | ES    |  |  |  |
| Wants (0-10)           | Wants (0-10) Weights |       | Score | Value  | Score | Value        | Score |  |  |  |
| Stiffness              | 40.00%               | 4     | 1.6   | 8      | 3.2   | 9            | 3.6   |  |  |  |
| Durability             | 40.00%               | 4     | 1.6   | 8      | 3.2   | 9            | 3.6   |  |  |  |
| Cost                   | 5.00%                | 10    | 0.5   | 5      | 0.25  | 1            | 0.05  |  |  |  |
| Weight                 | 15.00%               | 6     | 0.9   | 5      | 0.75  | 8            | 1.2   |  |  |  |
| Total Score            |                      | 4.6   |       | 7.4    | 1     | 8.45         |       |  |  |  |

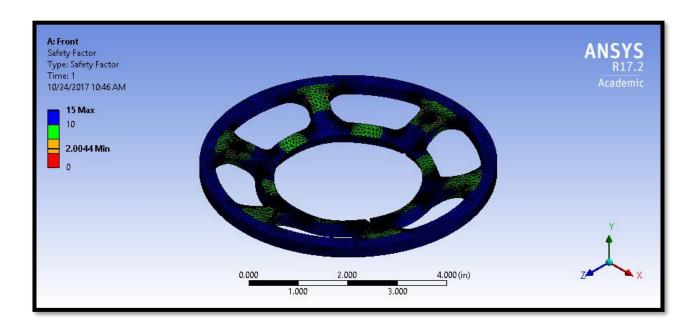

### University of Louisville

### Motor Selection

•Aerotech L2200-G selected after reviewing several OpenRocket simulation results. Will deliver vehicle to approximately 5,500 ft. with an inactive Variable Drag System.

•Cesaroni 2375 or Cesaroni 3150 may be used if launch vehicle mass decreases


| Diameter                 | 75 mm    |
|--------------------------|----------|
| Length                   | 68.1 cm  |
| Total Weight             | 4,783 g  |
| <b>Propellant Weight</b> | 2,518 g  |
| Average Thrust           | 2,200 N  |
| Maximum Thrust           | 3,104 N  |
| Total Impulse            | 5,104 Ns |
| Burn Time                | 2.3 sec  |

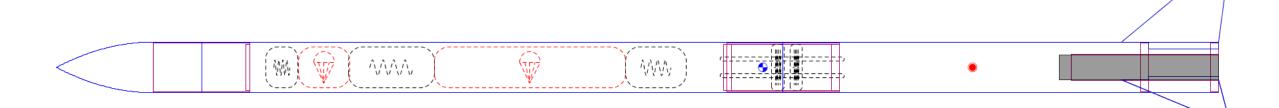



#### **University of Louisville**

# Centering Ring Design

- •0.25 in. thick 6061-T6 aluminum
- •Designed to minimize mass and maintain a factor of safety greater than 2.0 during motor burn






### **University of Louisville**

### Subscale Launch Vehicle

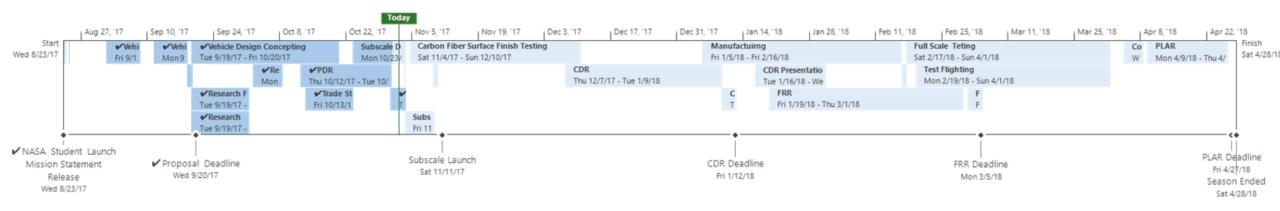
•A half scale model will be launched to verify the launch vehicle design.

- •Will verify:
  - Aerodynamic properties and stability of the launch vehicle
  - ARRD deployment device and toroidal parachute design



# Flight Characteristics

| Characteristic                                                         | Sub-Scale | Full-Scale     |
|------------------------------------------------------------------------|-----------|----------------|
| Stability Margin at Rail Exit (in.)                                    | 2.23      | 2.25           |
| Simulated Center of Pressure (CP)<br>Location from Nose Cone Tip (in.) | 50.40     | 96.51          |
| Center of Gravity (CG) Location from<br>Nose Cone Tip (in.)            | 43.42     | 82.33          |
| Exit Rail Velocity (ft./s)                                             | 94.9      | 95.4           |
| Maximum Velocity (ft./s)                                               | 515       | 732            |
| Maximum Acceleration (ft./s <sup>2</sup> )                             | 595       | 479            |
| Simulated Apogee (ft.)                                                 | 2,214     | 5,562 (No VDS) |
| Thrust-to-Weight Ratio                                                 | 20.01     | 15.26          |


### **University of Louisville**

# Vehicle Requirements Compliance Plan

- •All launch vehicle requirements will be verified using the standards laid out in the NASA Systems Engineering Handbook.
- •Statement of Work Requirements 2.1 -2.21 will be complied with via Inspection, Analysis, Demonstration or Test.

| Requirement<br>Number | Requirement Description                                       | Method of Verification                                                             |
|-----------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------|
| 2.1                   | The vehicle will deliver the payload to an apogee altitude of | Analysis: The launch vehicle shall be designed to reach an apogee altitude of      |
|                       | 5,280 feet above ground level (AGL).                          | 5,280 feet AGL. Several OpenRocket simulations as well as hand calculations        |
|                       |                                                               | will be performed to ensure the ideal motor is selected. The VDS will be tested to |
|                       |                                                               | ensure an accurate altitude is achieved.                                           |
| 2.2                   | The vehicle will carry one commercially available,            | Inspection: A PerfectFlite StratoLogger CF altimeter will be used to record the    |
|                       | barometric altimeter for recording the official altitude used | official apogee altitude for the competition flight.                               |
|                       | in determining the altitude award winner.                     |                                                                                    |
| 2.3                   | Each altimeter will be armed by a dedicated arming switch     | Inspection: The altimeters shall utilize a 6-32 PCB Screw-Switch purchased         |
|                       | that is accessible from the exterior of the rocket airframe   | from Missile-Works. The screw switch shall be mounted on the altimeter sled        |
|                       | when the rocket is in the launch configuration on the launch  | with a small hole drilled into the airframe to provide access to the switch. The   |
|                       | pad.                                                          | screw switch holes shall be placed opposite from the rail buttons to ensure the    |
|                       |                                                               | launch rail will not block access.                                                 |

### Vehicle Project Plan



Project Plan through CDR

| Task                                   | Start | End   | Task          | Start | End  |
|----------------------------------------|-------|-------|---------------|-------|------|
| Subscale Manufacturing                 | 10/23 | 11/8  | CDR           | 12/7  | 1/9  |
| Carbon Fiber Surface Finish<br>Testing | 11/4  | 12/10 | Manufacturing | 1/5   | 2/16 |
| Subscale ground testing                | 11/9  | 11/10 | CDR Review    | 1/9   | 1/12 |
| Subscale Launch                        | 11/11 | 11/11 | CDR Deadline  | 1/12  | 1/12 |

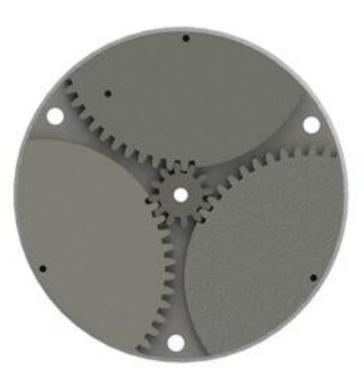
#### **University of Louisville**

### PDR Presentation Agenda

- Launch Vehicle
- •Variable Drag System
- Recovery
- •Safety
- •Payload
- •Educational Outreach
- •Budget

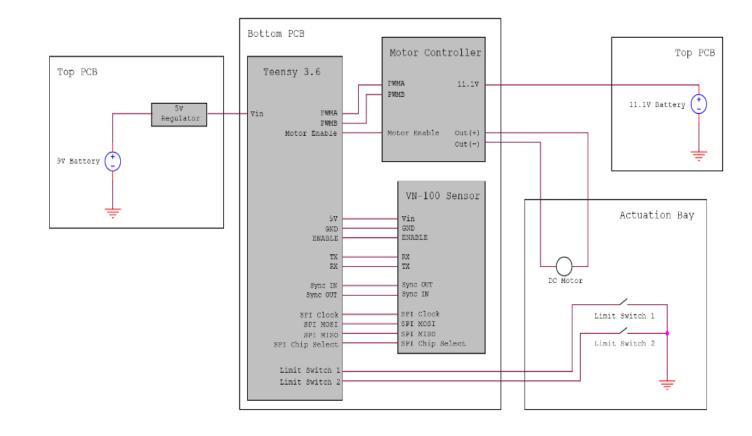
# Variable Drag System

The Variable Drag System (VDS) is an autonomous active apogee targeting system which will bring the vehicle to 5,280 ft. AGL +/- 23 ft.


VDS Agenda:

- Technical design of the VDS
- Altitude predictions and control theory
- Safety of the VDS




### Technical Design - Mechanical

- Increases Drag Coefficient of Vehicle by factor of
- 1.38 to reduce apogee from 5,500 ft. to 5,280 ft.
- Three 6061-T6 aluminum drag blades
- Delrin plates provide a low friction bearing surface
- Simultaneously actuated by central DC motor



#### **University of Louisville**

### Technical Design - Electrical



- Data input from VN-100 IMU
- Custom built software running on

### Teensy 3.6 microcontroller

• Telemetry System through XBEE

pro RF transmitter

Setpoint path

#### **University of Louisville**

### Telemetry System

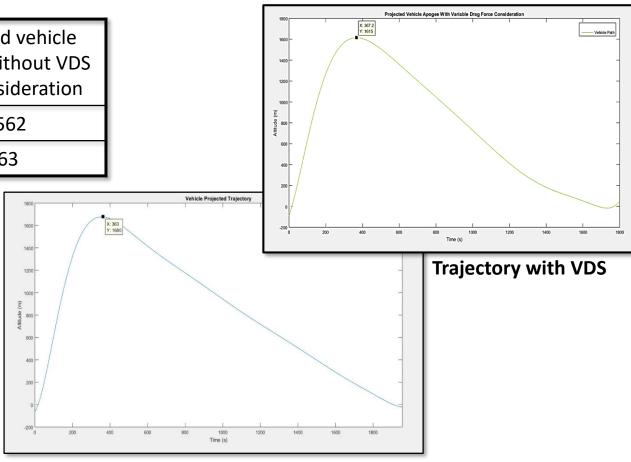
VDS RF telemetry system features:

- Designed to relay real-time VDS data to ground.
- Custom designed ground station GUI.
- Integrated with Teensy 3.6.
- Data transmission up to 120 kb/s.
- Maximum transmission range of 65 miles.



#### **University of Louisville**




| ]                          | Telemetric Long Distance Radio (TLDR) |       |                  |           |        |         |       |           |       |  |  |
|----------------------------|---------------------------------------|-------|------------------|-----------|--------|---------|-------|-----------|-------|--|--|
| Options:                   |                                       | P9    | 00               | XBEE S    | SX PRO | XBEE SX |       | RN2903A-I |       |  |  |
|                            |                                       | Ν     | <b>Iandatory</b> | requireme | ents   |         |       |           |       |  |  |
| Range $> 1$ mile           |                                       | Ye    | es               | Y         | es     | Y       | es    | Y         | es    |  |  |
| ISM Band                   |                                       | Ye    | es               | Y         | Yes    |         | es    | Yes       |       |  |  |
| Categories                 | Weights                               | Value | Score            | Value     | Score  | Value   | Score | Value     | Score |  |  |
| Transmit Power (0-10)      | 25.0%                                 | 10    | 2.5              | 10        | 2.5    | 6       | 1.5   | 7         | 1.75  |  |  |
| Ease of integration (0-10) | 25.0%                                 | 5     | 1.25             | 8         | 2      | 8       | 2     | 5         | 1.25  |  |  |
| Data Rate (0 - 10)         | 20.0%                                 | 8     | 1.6              | 7         | 1.4    | 7       | 1.4   | 9         | 1.8   |  |  |
| Sensitivity (0 - 10)       | 15.0%                                 | 6     | 0.9              | 5         | 0.75   | 5       | 0.75  | 9         | 1.35  |  |  |
| Cost (0-10)                | 10.0%                                 | 4     | 0.4              | 2         | 0.2    | 7       | 0.7   | 10        | 1     |  |  |
| Current Draw (0-10)        | 2                                     | 0.1   | 4                | 0.2       | 8      | 0.4     | 6     | 0.3       |       |  |  |
| Total Score                |                                       | 6.75  |                  | 7.05      |        | 3.25    |       | 4.45      |       |  |  |

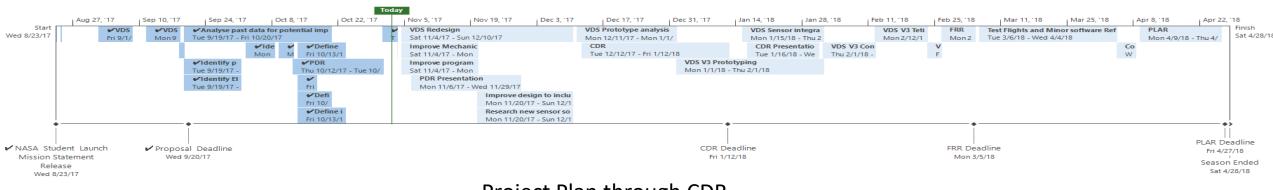
### Altitude Predictions

|                | Predicted vehicle<br>apogee with VDS<br>drag consideration | Predicted vehicle<br>apogee without VDS<br>drag consideration |
|----------------|------------------------------------------------------------|---------------------------------------------------------------|
| Altitude (ft.) | 5,298                                                      | 5,562                                                         |
| Time (s)       | 367                                                        | 363                                                           |

Matlab simulations are used to:

- Model drag effects
- Tune the control scheme
- Perform failure analysis




#### **Trajectory without VDS**

#### **University of Louisville**

### VDS Safety

| Hazard                                                                         | Cause                                        | Outcome                                                                                                                                              | Severity | Probability | Rating   | Mitigation                                                                                                             |
|--------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|----------|------------------------------------------------------------------------------------------------------------------------|
| Pressure phenomenon from<br>open-ended propulsion bay<br>causes altitude error | Vacuum formed under<br>propulsion bay        | VDS actuates too early, launch vehicle undershoots altitude resulting in mission failure                                                             | 2        | 3           | Moderate | Electronics bay will be airtight from the actuation bay to prevent possible interference                               |
| Broken gearbox                                                                 | VDS blades remained actuated during recovery | Permanent damage to VDS assembly<br>Hazard to crowd if recovery is unsuccessful                                                                      | 2        | 4           | Moderate | VDS is programmed to retract blades after<br>apogee<br>The team is currently investigating<br>recovery force reduction |
| Time variable overflow                                                         | Extended run time                            | VDS drag blazes could potentially actuate on rail,<br>leading to increased rail friction, rail button shear<br>and lower than expected exit velocity | 1        | 4           | Moderate | If time on rail is excessive, VDS can be<br>restarted removing the issue of the<br>variable overflow                   |

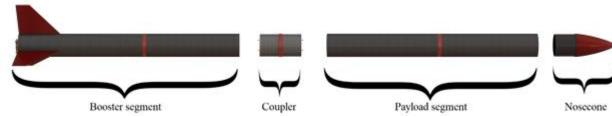
### VDS Project Plan



Project Plan through CDR

| Task                                                 | Start | End   | Task                                                                                 | Start | End   |
|------------------------------------------------------|-------|-------|--------------------------------------------------------------------------------------|-------|-------|
| Improve mechanical systems to mitigate gear friction | 11/4  | 11/20 | Improve design to include external power and cable connectors to improve integration | 11/20 | 12/10 |
| Improve programming to remove errors                 | 11/4  | 12/10 | VDS Prototyping                                                                      | 12/11 | 1/1   |
| Sensor Data Collection and<br>Analysis               | 11/11 | 12/10 | CDR                                                                                  | 12/12 | 1/12  |
|                                                      |       |       | CDR Deadline                                                                         | 1/12  | 1/12  |
|                                                      |       |       |                                                                                      |       |       |

### **University of Louisville**


### PDR Presentation Agenda

- Launch Vehicle
- •Variable Drag System
- Recovery
- •Safety
- •Payload
- •Educational Outreach
- •Budget

### **Recovery Overview**

- Cruciform design chosen for drogue.
- Toroidal design chosen for main.
- Dual deployment utilizing a release device.
- Charge well and reduction ring research.





#### **University of Louisville**

# Design choices

- All parachutes were considered for drogue and main parachutes, but not all met specifications.
- Qualitative characteristics were also considered.

| Design         | Cd   | Angle of oscillation |
|----------------|------|----------------------|
| Annular        | 0.90 | <u>&lt; +</u> 6      |
| Cruciform      | 0.60 | <u>&lt; +</u> 2      |
| Toroidal       | 1.40 | <u>&lt; +</u> 6      |
| Vortex ring    | 1.80 | <u>&lt; +</u> 2      |
| Flat hexagonal | 0.75 | <u>&lt; +</u> 30     |
| Hemispherical  | 0.70 | <u>&lt; +</u> 10     |

### Cruciform Drogue

- Easily manufactured
- Customizable for drag or stability
- Functions as main for coupler and nosecone

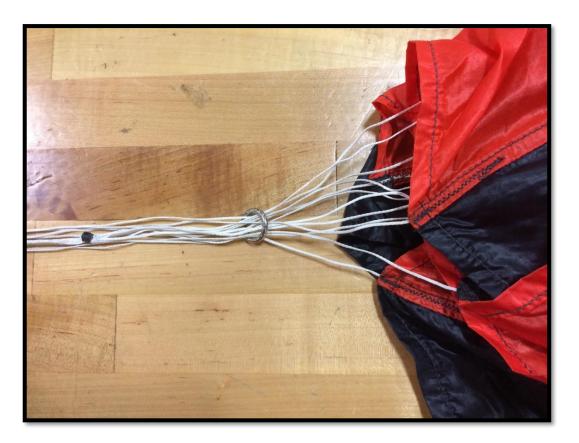
| Payload Drogue and Booster Drogue |         |         |       |          |       |                |       |           |       |
|-----------------------------------|---------|---------|-------|----------|-------|----------------|-------|-----------|-------|
| Options                           |         | Annular |       | Toroidal |       | Flat Hexagonal |       | Cruciform |       |
| Mandatory requirements            |         |         |       |          |       |                |       |           |       |
| Oscilation < 10 degrees           |         | Yes     |       | Yes      |       | No             |       | Yes       |       |
| Wants (0-10)                      | Weights | Value   | Score | Value    | Score | Value          | Score | Value     | Score |
| Efficiency (drag coefficient)     | 10%     | 5       | 0.5   | 8        | 0.8   | 0.4            | 0.04  | 3         | 0.3   |
| Stability (angle of oscilation)   | 30%     | 3       | 0.9   | 3        | 0.9   | 1              | 0.3   | 7         | 2.1   |
| Ease of Deisgn                    | 20%     | 7       | 1.4   | 6        | 1.2   | 10             | 2     | 9         | 1.8   |
| Ease of Manufacturing             | 20%     | 7       | 1.4   | 6        | 1.2   | 10             | 2     | 9         | 1.8   |
| Deployment Simplicity             | 15%     | 7       | 1.05  | 7        | 1.05  | 10             | 1.5   | 10        | 1.5   |
| Testablility                      | 5%      | 7       | 0.35  | 7        | 0.35  | 10             | 0.5   | 10        | 0.5   |
| Total score5.6                    |         | .6      | 5     | .5       | 6.    | 34             | 8     | 3         |       |



#### **University of Louisville**

### Toroidal Main

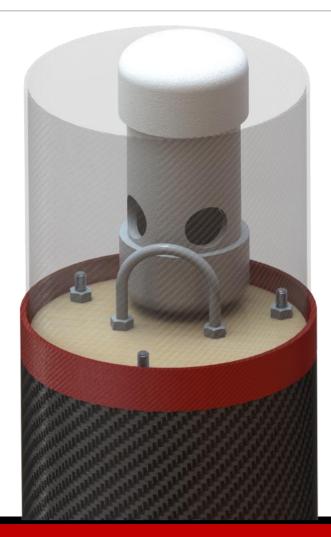
- Low volume, low mass, high drag
- Reliably deployed
- High opening force


| Payload Main and Booster Main   |         |       |         |       |          |       |             |       |           |  |
|---------------------------------|---------|-------|---------|-------|----------|-------|-------------|-------|-----------|--|
| Options                         | Options |       | Annular |       | Toroidal |       | Vortex Ring |       | Cruciform |  |
| Mandatory requirements          |         |       |         |       |          |       |             |       |           |  |
| Drag Coefficient > 0.8          | -       | Y     | es      | Y     | es       | Y     | es          | Ν     | lo        |  |
| Wants (0-10)                    | Weights | Value | Score   | Value | Score    | Value | Score       | Value | Score     |  |
| Efficiency (drag coefficient)   | 40%     | 5     | 2       | 8     | 3.2      | 10    | 4           | 3     | 1.2       |  |
| Stability (angle of oscilation) | 10%     | 3     | 0.3     | 3     | 0.3      | 10    | 1           | 7     | 0.7       |  |
| Ease of Design                  | 15%     | 7     | 1.05    | 6     | 0.9      | 2     | 0.3         | 9     | 1.35      |  |
| Ease of Manufacturing           | 10%     | 9     | 0.9     | 7     | 0.7      | 2     | 0.2         | 8     | 0.8       |  |
| Deployment Simplicity           | 20%     | 7     | 1.4     | 7     | 1.4      | 3     | 0.6         | 10    | 2         |  |
| Testablility                    | 5%      | 7     | 0.35    | 7     | 0.35     | 2     | 0.1         | 9     | 0.45      |  |
| Total score                     |         |       | 6       | 6.    | 85       | 6     | .2          | 6     | .5        |  |



### **University of Louisville**

# **Opening Forces**

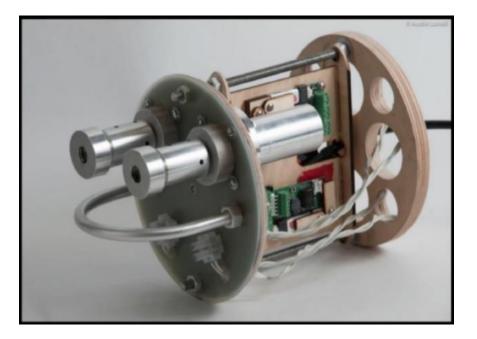

- Due to the large opening forces seen by the toroidal design, the team has begun research towards the use of opening force reduction rings.
- The ring is placed over the lines to the mouth of the parachute.
- Shroud lines must fight the ring to expand.



#### **University of Louisville**

# Charge Wells

- The need to protect the payload from black powder separation charges has led us to pursue the use of charge wells.
- Contain the residue and smoke from a black powder ignition.




#### **University of Louisville**

# Charge Well vs. CO2 Separation

- CO2 produces no residue or smoke
- More complex system
- Heavier system
- May be pursued in the future if weight limits permit

| Separation methods |         |       |       |             |       |  |  |
|--------------------|---------|-------|-------|-------------|-------|--|--|
| Options            |         | C     | 02    | Charge Well |       |  |  |
| Mandatory requir   | ements  |       |       |             |       |  |  |
| Produces > 6 PSI   |         | Y     | es    | Yes         |       |  |  |
| Wants (0-10)       | Weights | Value | Score | Value       | Score |  |  |
| Cleanliness        | 40%     | 10    | 4     | 9           | 3.6   |  |  |
| Reliable           | 30%     | 8     | 2.4   | . 9         | 2.7   |  |  |
| Simplicity         | 30%     | 5     | 1.5   | 9           | 2.7   |  |  |
| Total score        |         | 7     | .9    | 9           |       |  |  |

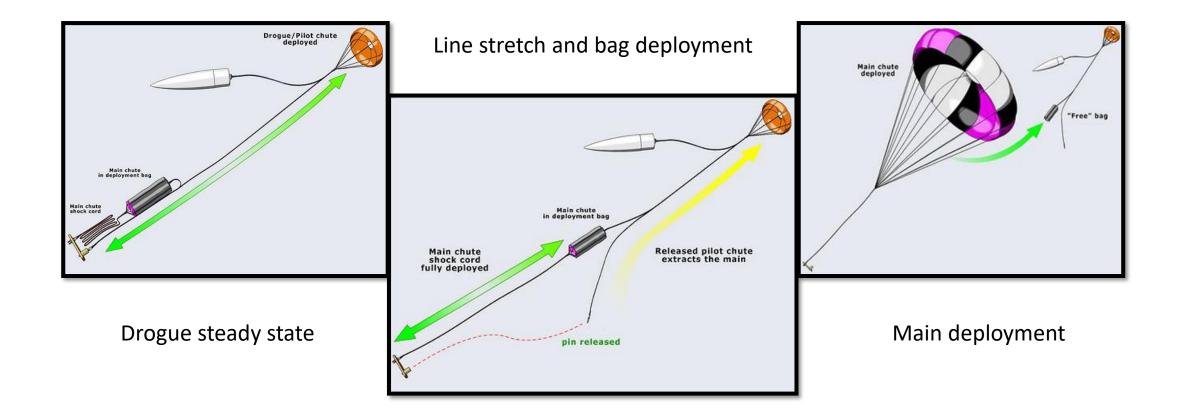


### Advanced Retention and Release Device

- The need to separate the launch vehicle into two independent sections has led to the use a dual deployment bay
- The Advanced Retention and Release Device (ARRD) was chosen



### ARRD vs. Tender Descender


- ARRD has more contained parts
- TD parts can impact the airframe when activated or be lost if not tethered properly

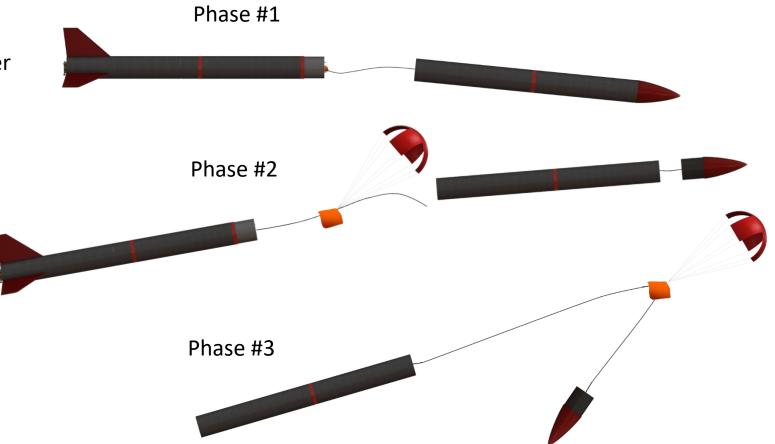
| Release device                        |         |       |       |                  |       |  |  |
|---------------------------------------|---------|-------|-------|------------------|-------|--|--|
| Options                               |         | AR    | RD    | Tender Descender |       |  |  |
| Mandatory requirer                    | nents   |       |       |                  |       |  |  |
| Provides retention until<br>activated |         | Y     | es    | Yes              |       |  |  |
| Wants (0-10)                          | Weights | Value | Score | Value            | Score |  |  |
| Ease of Use                           | 40%     | 7     | 2.8   | 6                | 2.4   |  |  |
| Reliable                              | 50%     | 8     | 4     | 8                | 4     |  |  |
| Simplicity                            | 10%     | 6     | 0.6   | 8                | 0.8   |  |  |
| Total score                           |         | 7.    | .4    | 7.               | .2    |  |  |



### **University of Louisville**

### Release Device and Dual Deployment




#### **University of Louisville**

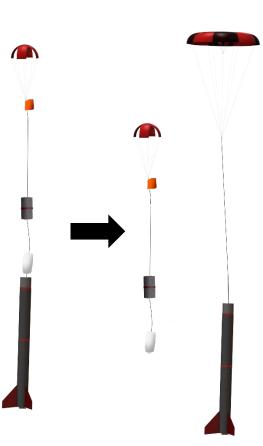
Apogee Events

1: separation between payload and coupler

2: booster drogue deploy and nosecone separation after +2 sec. Delay

3: payload drogue deploy



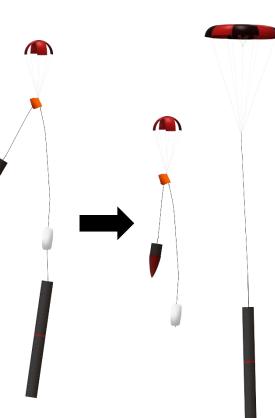

# Drogue Phase



### **University of Louisville**

### **Booster Main Event**

- Coupler separation at 500 ft.
- Deployment bag pulled from recovery bay.
- Coupler becomes own entity.




| Booster<br>segment             | Coupler<br>drogue | Booster<br>main |
|--------------------------------|-------------------|-----------------|
| Deployment<br>velocity         | ft/s              | 58.7 ft/s       |
| Steady state velocity          | 26.5 ft/s         | 21.4 ft/s       |
| Opening<br>force               | lbs-f             | 260.8 lbs-f     |
| Kinetic<br>energy of<br>impact | 6.7 ft-lbs        | 65 ft-lbs       |

### **University of Louisville**

# Payload Main Event

- ARRD release at 500 ft.
- Deployment bag pulled from recovery bay.
- Nosecone becomes own entity.



| Payload<br>segment             | Nosecone<br>drogue | Payload<br>main |
|--------------------------------|--------------------|-----------------|
| Deployment<br>velocity         | ft/s               | 58.7 ft/s       |
| Steady state<br>velocity       | 26.5 ft/s          | 21.4 ft/s       |
| Opening<br>force               | lbs-f              | 254.0 lbs-f     |
| Kinetic<br>energy of<br>impact | 15.0 ft-lbs        | 65 ft-lbs       |

#### **University of Louisville**

### Recovery Procedure Summary

| Drogue Descent phase        |                    |                |                        |                         |  |  |  |  |  |
|-----------------------------|--------------------|----------------|------------------------|-------------------------|--|--|--|--|--|
| section of Launch vehicle   | weight (lbs)       | Diameter (in.) | Deployment vel. (ft/s) | Terminal Vel. (ft/s)    |  |  |  |  |  |
| Nose Cone + Payload Section | 3.17               | 50             | 96.5                   | 58.7                    |  |  |  |  |  |
| Coupler + Booster Section   | 16.83              | 50             | 64.3                   | 58.7                    |  |  |  |  |  |
|                             | Main Descent phase |                |                        |                         |  |  |  |  |  |
| section of Launch vehicle   | weight (lbs)       | Diameter (in.) | Terminal Vel. (ft/s)   | Kinetic Energy (ft-lbs) |  |  |  |  |  |
| Nose Cone                   | 3.17               | 50             | 26.5                   | 15                      |  |  |  |  |  |
| Payload Section             | 16.83              | 81             | 21.4                   | 65                      |  |  |  |  |  |
| Coupler                     | 2.04               | 50             | 26.5                   | 6.7                     |  |  |  |  |  |
| Booster                     | 16.61              | 80             | 21.4                   | 65                      |  |  |  |  |  |

# Drift Calculations

| 18/ind speed | Drift distance – weather-cocking distance (Ft.) |         |         |          |  |  |  |
|--------------|-------------------------------------------------|---------|---------|----------|--|--|--|
| Wind speed   | Booster                                         | Payload | Coupler | Nosecone |  |  |  |
| 0 МРН        | 0.0                                             | 0.0     | 0.0     | 0.0      |  |  |  |
| 5 MPH        | 634.9                                           | 629.4   | 532.4   | 532.4    |  |  |  |
| 10 MPH       | 1269.9                                          | 1258.7  | 1064.8  | 1064.8   |  |  |  |
| 15 MPH       | 1724.3                                          | 1709.3  | 1597.2  | 1597.2   |  |  |  |
| 20 MPH       | 2299.1                                          | 2279.1  | 2149.8  | 2149.8   |  |  |  |

### Recovery Project Plan

| Start Aug 27<br>Wed 8/23/17                                        | Rec      Analyse Pa     PDR        |       |         | ine tes ( CDR Presentatio Gr FRR          | Test Flights and Minor Re  | r 25, '18   Apr 8, '18   Apr 22, '18<br>finement PLAR<br>Mon 4/9/18 - Thu 4/<br>Co<br>W |
|--------------------------------------------------------------------|------------------------------------|-------|---------|-------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------|
| ✓ NASA Student Laum<br>Mission Statement<br>Release<br>Wed 8/23/17 | h Proposal Deadline<br>Wed 9/20/17 |       | Project | Plan through CDR                          | FRR Deadline<br>Mon 3/5/18 | PLAR Deadline<br>Fri 4/27/18<br>Season Ended<br>Sat 4/28/18                             |
|                                                                    | Task                               | Start | End     | Task                                      | Start                      | End                                                                                     |
|                                                                    | Subscale Preparation and design    | 10/20 | 11/3    | Increased shroud line testing             | 11/30                      | 12/21                                                                                   |
|                                                                    | Subscale manufacturing             | 11/2  | 11/8    | Full Scale Recovery design                | 12/5                       | 12/30                                                                                   |
|                                                                    | Subscale ground testing            | 11/8  | 11/11   | CDR                                       | 12/7                       | 1/9                                                                                     |
|                                                                    | Subscale Launch                    | 11/11 | 11/11   | Recovery manufacturing and ground testing | 12/30                      | 2/10                                                                                    |
|                                                                    | Analyze Subscale launch            | 11/12 | 11/15   | CDR Review                                | 1/9                        | 1/12                                                                                    |
|                                                                    | Charge wells testing               | 11/15 | 11/30   | CDR due date                              | 12/7                       | 1/9                                                                                     |

### **University of Louisville**

### PDR Presentation Agenda

- Launch Vehicle
- •Variable Drag System
- Recovery
- •Safety
- •Payload
- •Educational Outreach
- •Budget

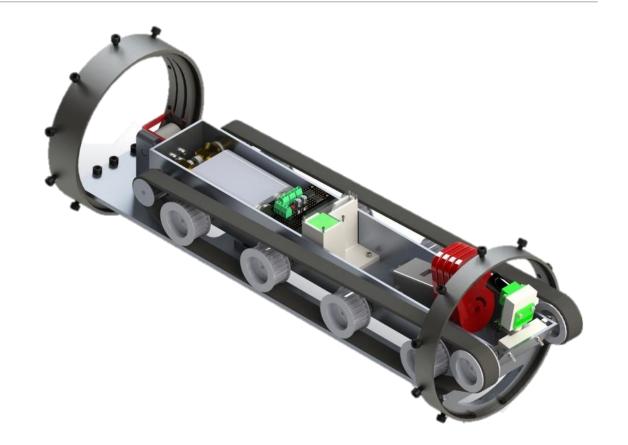
# Safety

| Risk Assessment Matrix |                  |              |              |                |  |  |  |  |
|------------------------|------------------|--------------|--------------|----------------|--|--|--|--|
| Drobability Laval      |                  | Severi       | ty Level     |                |  |  |  |  |
| Probability Level      | Catastrophic (1) | Critical (2) | Marginal (3) | Negligible (4) |  |  |  |  |
| Almost Certain (1)     | 2-High           | 3-High       | 4-High       | 5-Moderate     |  |  |  |  |
| Likely (2)             | 3-High           | 4-High       | 5-Moderate   | 6-Moderate     |  |  |  |  |
| Moderate (3)           | 4-High           | 5-Moderate   | 6-Moderate   | 7-Low          |  |  |  |  |
| Unlikely (4)           | 5-Moderate       | 6-Moderate   | 7-Low        | 8-Low          |  |  |  |  |
| Improbable (5)         | 6-Moderate       | 7-Low        | 8-Low        | 9-Low          |  |  |  |  |

### •Safety Manual

- Garage and team rule revisions
- Material Information (MSDS)
- Emergency equipment
- •Launch Procedures
  - Test launch procedural check list/item lists
  - Assembly Instructions and warnings of potential hazards
  - Mandatory safety briefing to address hazards




### **University of Louisville**

### PDR Presentation Agenda

- Launch Vehicle
- •Variable Drag System
- Recovery
- •Safety
- Payload
- •Educational Outreach
- •Budget

### Payload Agenda

- •System Level Trade Studies
- Payload Subsystems
- Payload Overview
- •Project Plan
- •Safety



# System Level Trade Studies

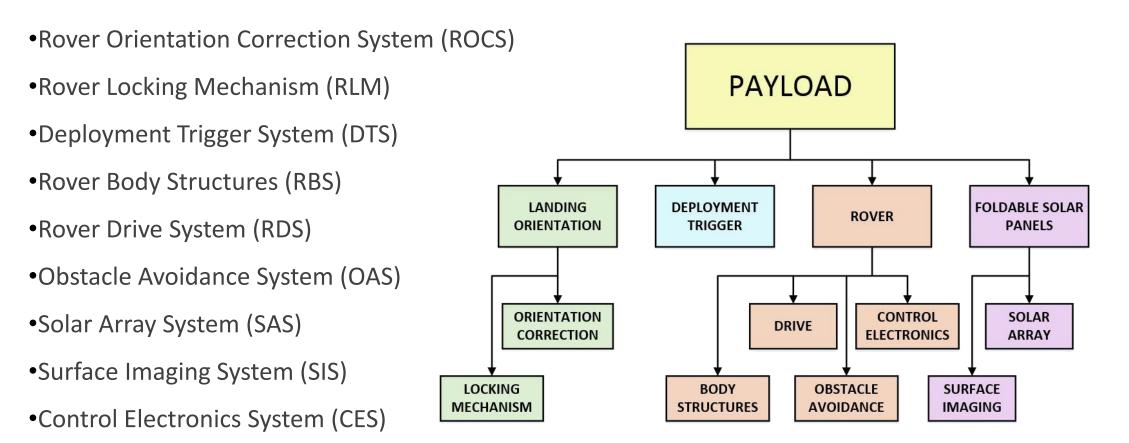
| System                | Intent of the Study                                                                           |
|-----------------------|-----------------------------------------------------------------------------------------------|
| Landing Correction    | Determine a system accounting for unpredictable orientation of the payload bay after landing. |
| Rover                 | Determine the wheel design and style of the autonomous rover.                                 |
| Deployment Trigger    | Determine a method ensuring deployment signal reception.                                      |
| Foldable Solar Panels | Determine a deployment method for the foldable solar panels.                                  |

# System Level Trade Study – Landing Correction

| Landing Correction Trade Study                  |         |          |          |           |          |       |        |  |
|-------------------------------------------------|---------|----------|----------|-----------|----------|-------|--------|--|
| Options:                                        |         | Center H | Bearings | Perimeter | Bearings | Actua | tors   |  |
| Mandatory Requirements                          |         |          |          |           |          |       |        |  |
| Achievable within 1 season                      |         | YI       | ES       | YI        | ES       | YE    | S      |  |
| System will ensure correct orientation of rover | YE      | ES       | YI       | ES        | YE       | S     |        |  |
| Categories                                      | Weights | Value    | Score    | Value     | Score    | Value | Score  |  |
| Integration                                     | 25.00%  | 6        | 1.5      | 9         | 2.25     | 3     | 0.75   |  |
| Simplicity of Design                            | 20.00%  | 7        | 1.4      | 9         | 1.8      | 2     | 0.4    |  |
| Manufacturability                               | 15.00%  | 8        | 1.2      | 10        | 1.5      | 1     | 0.15   |  |
| Affordability                                   | 10.00%  | 10       | 1        | 5         | 0.5      | 2     | 0.2    |  |
| Possible Effect on Ascent Attitude              | 10.00%  | 10       | 1        | 10        | 1        | 3     | 0.3    |  |
| Payload Weight                                  | 10.00%  | 8        | 0.8      | 6         | 0.6      | 2     | 0.2    |  |
| Impact on Size of Rover                         | 10.00%  | 7        | 0.7      | 4         | 0.4      | 10    | 1      |  |
| Total Score                                     | 100%    |          | 76.00%   |           | 80.50%   |       | 30.00% |  |

# System Level Trade Study – Rover

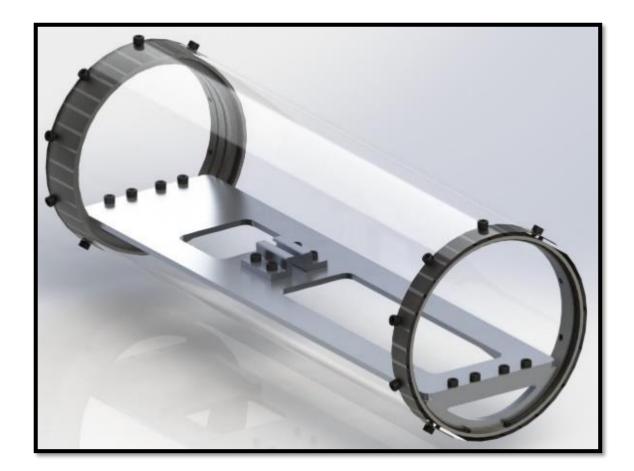
|                                   |             |       |        | <b>Rover Tra</b> | ade Study |       |        |           |          |
|-----------------------------------|-------------|-------|--------|------------------|-----------|-------|--------|-----------|----------|
| <b>Options:</b>                   |             | Auge  | ers    | Standar          | d Tires   | Tank  | Treads | Treds/Tir | es Combo |
| Mandatory Requi                   |             |       |        |                  |           |       |        |           |          |
| Able to advance rover of terrains | on multiple | YE    | S      | YI               | ES        | Y     | ES     | YI        | ES       |
| Categories                        | Weights     | Value | Score  | Value            | Score     | Value | Score  | Value     | Score    |
| Integration                       | 25.00%      | 8     | 2      | 8                | 2         | 8     | 2      | 7         | 1.75     |
| All Terrain Handling              | 20.00%      | 8     | 1.6    | 4                | 0.8       | 10    | 2      | 8         | 1.6      |
| Drive<br>Mechanism/Control        | 20.00%      |       |        |                  |           |       |        |           |          |
| Simplicity                        |             | 9     | 1.8    | 9                | 1.8       | 8     | 1.6    | 4         | 0.8      |
| Maneuverability                   | 10.00%      | 5     | 0.5    | 6                | 0.6       | 9     | 0.9    | 5         | 0.5      |
| Payload Weight                    | 10.00%      | 5     | 0.5    | 8                | 0.8       | 6     | 0.6    | 5         | 0.5      |
| Manufacturability                 | 10.00%      | 6     | 0.6    | 9                | 0.9       | 6     | 0.6    | 5         | 0.5      |
| Affordability                     | 5.00%       | 6     | 0.3    | 9                | 0.45      | 7     | 0.35   | 6         | 0.3      |
| Total Score                       | 100%        |       | 73.00% | 73.50%           |           |       | 80.50% | 59.50%    |          |


### System Level Trade Study – Deployment Trigger

| Deployment Trigger Trade Study                     |         |          |          |       |       |            |           |            |          |
|----------------------------------------------------|---------|----------|----------|-------|-------|------------|-----------|------------|----------|
| Options:                                           |         | Detach R | Receiver | Tet   | her   | Protruding | g Antenna | Fiberglass | Airframe |
| Mandatory Requirements                             |         |          |          |       |       |            |           |            |          |
| Little to no effect on the design of the launch ve | ehicle  | YE       | ES       | YI    | ES    | YI         | ES        | N          | )        |
| Categories                                         | Weights | Value    | Score    | Value | Score | Value      | Score     | Value      | Score    |
| Integration                                        | 20.00%  | 7        | 1.4      | 7     | 1.4   | 6          | 1.2       | 10         | 2        |
| Barriers to signal                                 | 20.00%  | 10       | 2        | 10    | 2     | 10         | 2         | 2          | 0.4      |
| Potential for damage to antenna                    | 20.00%  | 8        | 1.6      | 8     | 1.6   | 2          | 0.4       | 10         | 2        |
| Simplicity of Design                               | 10.00%  | 8        | 0.8      | 5     | 0.5   | 9          | 0.9       | 10         | 1        |
| Affordability                                      | 10.00%  | 9        | 0.9      | 7     | 0.7   | 9          | 0.9       | 6          | 0.6      |
| Complexity of signal radiation pattern             | 10.00%  | 5        | 0.5      | 5     | 0.5   | 9          | 0.9       | 7          | 0.7      |
| Effect on motion of the rover                      | 10.00%  | 7        | 0.7      | 5     | 0.5   | 10         | 1         | 10         | 1        |
| Total Score                                        | 100%    | 79.00%   |          |       |       | 73.00%     |           | 77.00%     |          |

# System Level Trade Study – Solar Panels

|                                   |               |         | Foldab  | le Solar Pa | anels Trade | e Study   |           |        |       |
|-----------------------------------|---------------|---------|---------|-------------|-------------|-----------|-----------|--------|-------|
| <b>Options:</b>                   |               | 180 Deg | ee Flip | Tower       | Rotate      | Tent Styl | e/Origami | Zig    | Zag   |
| Mandatory Re                      | equirements   |         |         |             |             |           |           |        |       |
| Achievable within                 | 1 season      | YE      | S       | Y           | ES          | Y         | ES        | YI     | ES    |
| Satisfies NASA re<br>foldable     | equirement of | YES     |         | YES         |             | YES       |           | YES    |       |
| Categories                        | Weights       | Value   | Score   | Value       | Score       | Value     | Score     | Value  | Score |
| Integration                       | 25.00%        | 9       | 2.25    | 8           | 2           | 5         | 1.25      | 6      | 1.5   |
| Solar Array<br>Area               | 25.00%        | 5       | 1.25    | 9           | 2.25        | 10        | 2.5       | 7      | 1.75  |
| Simplicity of Design              | 15.00%        | 8       | 1.2     | 7           | 1.05        | 3         | 0.45      | 7      | 1.05  |
| Affordability                     | 15.00%        | 8       | 1.2     | 7           | 1.05        | 6         | 0.9       | 7      | 1.05  |
| Payload Weight                    | 15.00%        | 8       | 1.2     | 6           | 0.9         | 7         | 1.05      | 7      | 1.05  |
| Availability of<br>Useable Panels | 5.00%         | 10      | 0.5     | 10          | 0.5         | 10        | 0.5       | 10     | 0.5   |
| Total Score                       | 100%          |         | 76.00%  |             | 77.50%      |           | 66.50%    | 69.00% |       |

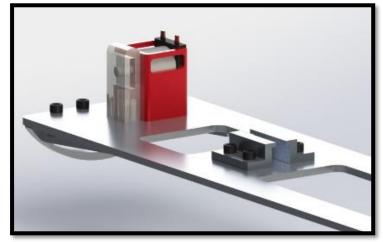

### Payload Subsystems



#### **University of Louisville**

### Rover Orientation Correction System (ROCS)

- •Aft End Thrust Bearing
- •Forward End Support Bearing
- •Bridging Sled
- •Material: D2 Tool Steel and AISI 1010 carbon steel ball bearings
- •Supports rover throughout flight and ensures proper orientation of the rover prior to deployment



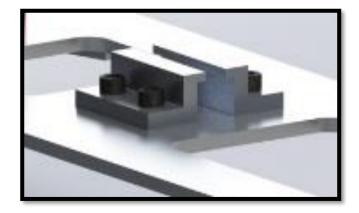

# Rover Locking Mechanism (RLM)

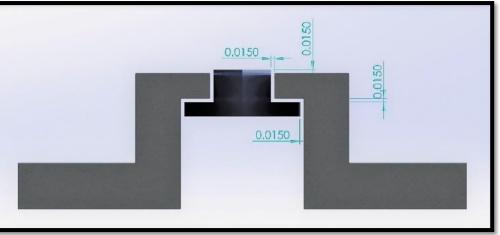
•A solenoid armature passes through both a support bracket attached to the ROCS Bridging Sled and a bracket attached to the rear of the rover.

•Solenoid locks movement along central axis of the launch vehicle

•System is locked when no power is applied as a safety measure







#### **University of Louisville**

# Rover Locking Mechanism (RLM) Cont....

•Female T-slot mounted to the Bridging Sled matches with male T-slot nut mounted to the under side of the rover

•Restricts motion relative to the ROCS in the axes perpendicular to the central axes of the launch vehicle





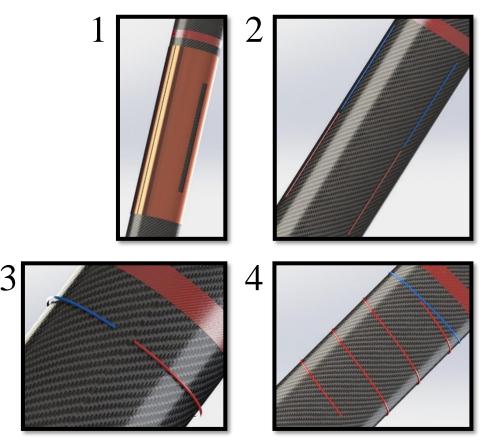
# Rover Locking Mechanism (RLM) Cont....

•Two BN0055 9-DOF IMUs

•An orientation check will be performed prior to deployment

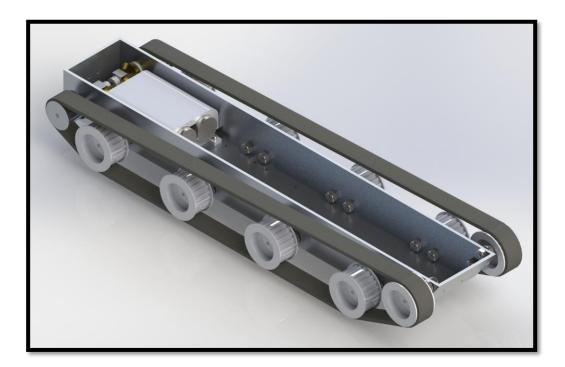
•Both sensors must read upright orientation of the rover to unlock

•Further mitigates possibility of premature deployment






### **University of Louisville**

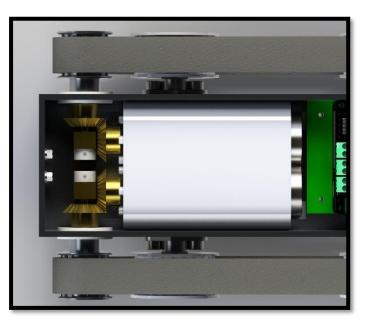

# Deployment Trigger System (DTS)

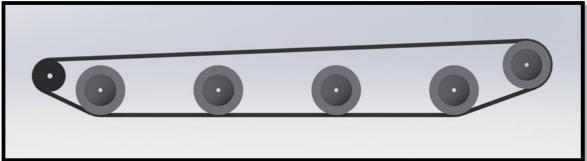
- •The deployment signal will be a unique package of data sent by a team member after gaining RSO permission
- •Four options are being considered for mounting the antenna to the exterior of the airframe
  - 1.) Slot Antenna
    - 2.) Multiple Parallel Dipoles
    - 3.) Open Loop Antenna
    - 4.) Spiral Antenna
- •ANSYS simulations and field testing are required to determine the design to be pursued



### Rover Body Structures (RBS)

- •Material: Aluminum Sheet
- •Water-jet for precision
- •Formed with CNC bending press
- •Welded corners for strength
- •Acts as main support for all systems and electronics bay





# Rover Drive System (RDS)

•Two main drive motors transfer power to drive axels through a set of 90 degree bevel gears

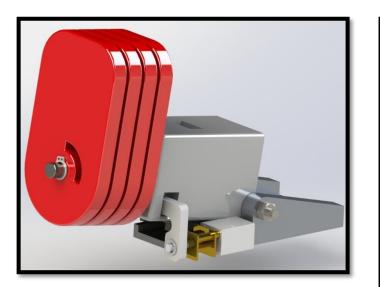
•Drive motors are secured by a custom mount

•Track design intended to optimize terrain handling of the rover





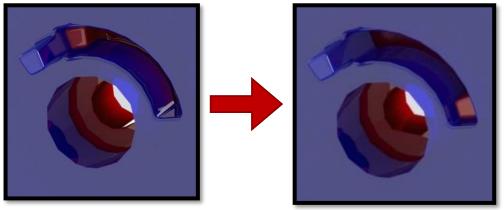
#### **University of Louisville**


# Obstacle Avoidance System (OAS)

•Lidar sensor for detection of insurmountable objects Field-of-View •Lidar will be mounted on servo giving a 180° field-of-view •Rover will turn in the direction of least obstruction Lidar and Servo

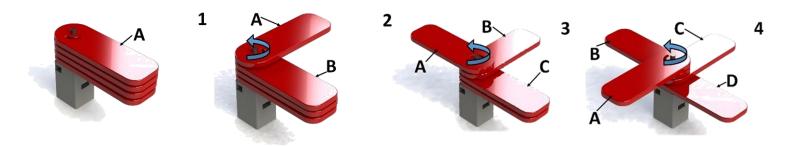
# Solar Array System (SAS)

•Tower assembly will be unlocked after reaching final destination and actuate via a spring hinge


•Solar panel support arms will be mounted to deployment motor shaft






# Solar Array System (SAS) Cont....

•Towing peg protruding from under side of each panel matches with slot cut in panel below it

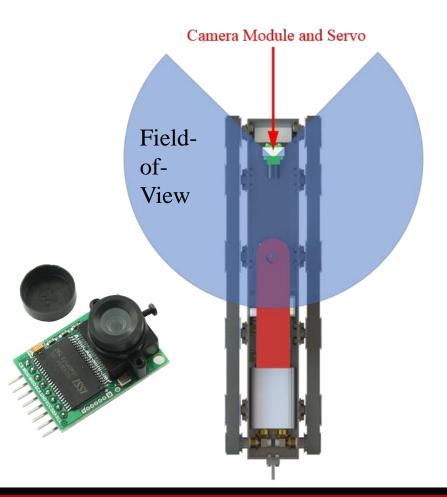


•Top support arm is driven

•Bottom support arm is fixed



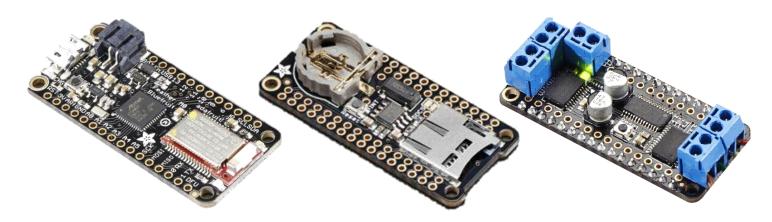
#### **University of Louisville**


# Surface Imaging System (SIS)

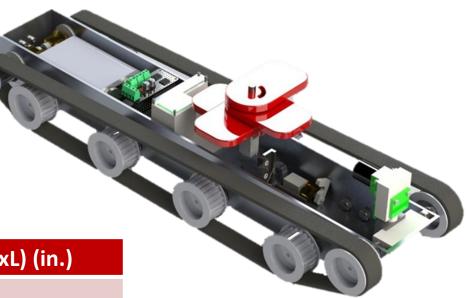
•Take images of payload and surrounding area

•Mounted on servo to increase field-of-view

•Store images on microSD card for analysis after retrieval of rover


•Operation is a secondary mission and will in no way effect the primary mission




### **University of Louisville**

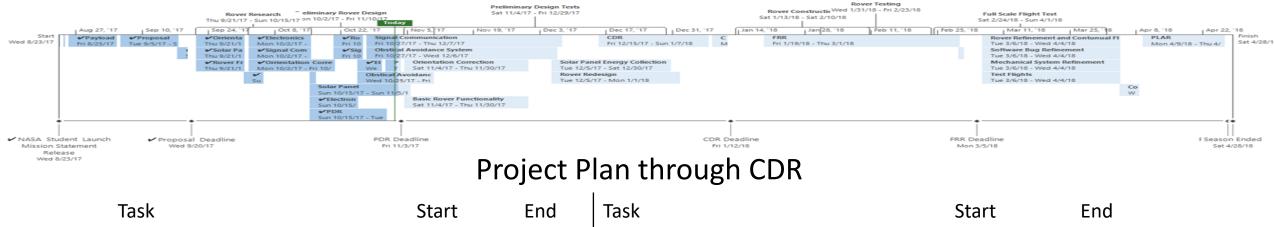
# Control Electronics System (CES)

- •Feather MO Bluefruit LE microcontroller
  - Run the control scheme for the rover
- •FeatherWing Adalogger data logging board
  - Record data collected throughout the flight
- •FeatherWing Motor Shield
  - Drive two main drive motors, RLM solenoid, and SAS deployment motor



### Payload Overview




| Assembly         | Weight (lbs) | Dimensions (WxHxL) (in.) |
|------------------|--------------|--------------------------|
| ROCS             | 4.57         | ID: Ø5.587 x 17.9        |
| Rover (Stowed)   | 4.69         | 4.7 x 4.05 x 17.9        |
| Rover (Deployed) | 4.69         | 4.7 x 4.11 x 17.9        |
| Total Payload    | 9.26         | Length: 19.6             |

### **University of Louisville**

# Requirement Compliance Plan

| NASA Student<br>Launch Handbook<br>Requirement No. | Requirement                                                                                                         | System Designed to Achieve Requirement                                                        |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 4.5.1                                              | Teams will design a custom rover that will<br>deploy from the internal structure of the<br>launch vehicle.          | The Rover Orientation Correction System, Rover<br>Locking Mechanism, and Rover Body Structure |
| 4.5.2                                              | At landing, the team will remotely activate<br>a trigger to deploy the rover from the<br>rocket.                    | The Deployment Trigger System                                                                 |
| 4.5.3                                              | After deployment, the rover will<br>autonomously move at least 5 ft. (in any<br>direction) from the launch vehicle. | The Rover Drive System, Obstacle Avoidance<br>System, and Control Electronics System          |
| 4.5.4                                              | Once the rover has reached its final destination, it will deploy a set of foldable solar cell panels.               | The Solar Array System                                                                        |

### Payload Project Plan

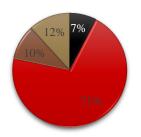


| Task                              | Start | End   | Task               | Start | End  |
|-----------------------------------|-------|-------|--------------------|-------|------|
| Signal Communication Testing      | 10/27 | 12/7  | Rover redesign     | 12/5  | 1/1  |
| Obstacle Avoidance System testing | 10/27 | 12/7  | CDR                | 12/15 | 1/7  |
| Orientation correction testing    | 11/4  | 11/30 | CDR Review         | 1/8   | 1/11 |
| Basic rover functionality         |       |       | Rover Construction | 1/9   | 2/10 |
| Solar panel energy collection     | 12/5  | 12/30 | CDR Deadline       | 1/12  | 1/12 |
|                                   |       |       |                    |       |      |

#### **University of Louisville**

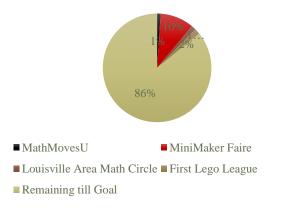
# Payload Safety

| Hazard                           | Cause                                                                                                                                                                                                                | Outcome                                                   | Severity | Probability | Rating   | Mitigation                                                                                                                                                          |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------|-------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Premature deployment             | Premature extraneous signal not transmitted by the team deploys the rover prior to the bay landing safely                                                                                                            | The rover may fall out of the open end of the payload bay | 1        | 4           | Moderate | The payload will have a locking<br>mechanism, two gyroscopes, and a<br>unique deployment signal. The<br>locking mechanism will remain<br>locked while unpowered.    |
| Failed mechanical locking system | <ol> <li>Cannot withstand liftoff loads</li> <li>Cannot withstand opening force loads</li> <li>Cannot withstand landing loads</li> <li>Solenoid retraction prevented due to loading from<br/>rover weight</li> </ol> | The rover may fall out of the open end of the payload bay | 2        | 4           | Moderate | The mechanical locking system will be tested extensively                                                                                                            |
| Unreceived deployment signal     | <ol> <li>Rover lands out of range</li> <li>Receiver antenna is damaged</li> <li>Obstructed receiver transmitter line-of-sight</li> </ol>                                                                             | The rover will not deploy.<br>Failed payload mission      | 2        | 3           | Moderate | Simulations and field testing will be<br>conducted on multiple antenna<br>configurations. Measures will be<br>taken to ensure that the range can<br>excess 2500 ft. |


### **University of Louisville**

### PDR Presentation Agenda

- Launch Vehicle
- •Variable Drag System
- Recovery
- •Safety
- •Payload
- Educational Outreach
- •Budget


### Outreach

#### Outreach



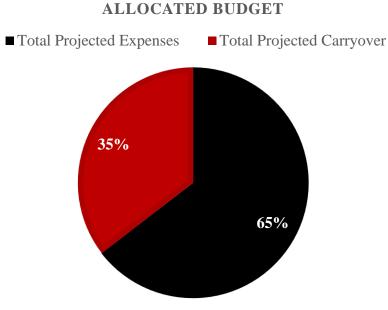
MathMovesU 16MiniMaker Faire 150Louisville Area Math Circle 21 First Lego League 25

#### **Outreach till Goal**

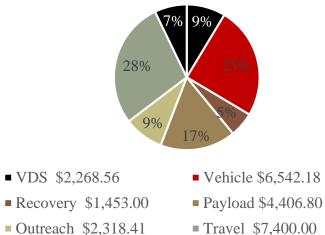




### PDR Presentation Agenda


- Launch Vehicle
- •Variable Drag System
- Recovery
- •Safety
- •Payload
- •Educational Outreach
- Budget

# Budget


 Remaining Balance
 Dr. Kelly NASA Prize Money NASA KY Grant Speed School Money
 Mechanical Money Electrical Money CECS Money Pending GE Grant

Misc. Donations

Income



### Budget Overview



Travel \$7,400.00

Merchandising \$1,885.00

### **University of Louisville**

Raython

### Questions?



### **University of Louisville**