Milestone Review Flysheet

Please see Milestone Review Flysheet Instructions.

Institution University of Louisville	Milestone

Vehicle Properties		
Total Length (in)	143	
Diameter (in)	6.17	
Gross Lift Off Weight (lb)	41.8	
Airframe Material	Fiberglass	
Fin Material Fiberglass		
Drag	Drag coefficient: 0.45	

Stability Analysis		
Center of Pressure (in from nose)	99.79	
Center of Gravity (in from nose)	84.15	
Static Stability Margin	2.54	
Thrust-to-Weight Ratio	5.27	
Rail Size (in)/ Length (in)	120	
Rail Exit Velocity (ft/s)	65.4	

Recovery System Properties				
	Upper Airframe Parachute			
Manufactu	ırer/Model	Vorte	x Ring - custom	made
Si	ze		42.8 ft^2	
Altitu	de at Deployme	nt (ft)	30	000
Veloci	ty at Deploymer	nt (ft/s)	64	1.4
Ter	minal Velocity (f	t/s)	15	5.2
Recovery Harness Material		9/16" tubular nylon		
Harness Size/Thickness (in)		9/16"		
Recovery Harness Length (ft)		30		
Harness/Airframe Interfaces 1/4 inch U-bolt and quick link			ick link	
Kinetic Energy of Each	Section 1 (Upper Airframe)	Section 2	Section 3	Section 4
Section (ft-lbs)	60			

Recovery Electronics			
Altimeter(s)/Timer(s) (Make/Model)	PerfectFlite StratoLogger (x6)		
Redundancy Plan	Each avionics bay will utlize a StatoLogger for a primary altimeter and will have a StratoLogger as a back up altimeter.		

Motor Properties		
Motor Manufacturer(s)	Cesaroni	
Motor Designation(s)	L935-IM	
Max/Average Thrust (lb)	356.5/209.9	
Total Impulse (lbf-sec)	707.4	
Mass (before, after burn)	5.6, 1.8	
Liftoff Thrust (lb)	148.4	

CDR

Ascent Analysis		
Maximum Velocity (ft/s)	428	
Maximum Mach Number	0.38	
Maximum Acceleration (ft/s^2)	225	
Target Apogee (1st Stage if Multiple Stages)	3033	
Stable Velocity (ft/s)	50	
Distance to Stable Velocity (ft)	7.9	

Recovery System Properties				
Lower Airframe Parachute				
Manufactu	rer/Model	Cruc	iform - custom r	made
Si	ze		38.5 ft^2	
Altitu	de at Deployme	nt (ft)	15	00
Veloci	ty at Deploymer	nt (ft/s)	34	.19
Ter	minal Velocity (1	ft/s)	18	.57
Recovery Harness Material		9/16" tubular nylon		
Harness Size/Thickness (in)		9/16"		
Recov	Recovery Harness Length (ft)		25	
Harness/Airframe Interfaces 1/4 inch U-bolt and quick link			ick link	
Kinetic Energy of Each	Section 1 (Lower Airframe)	Section 2 (Cache Capsule)	Section 3	Section 4
Section (ft-lbs)	60	30		

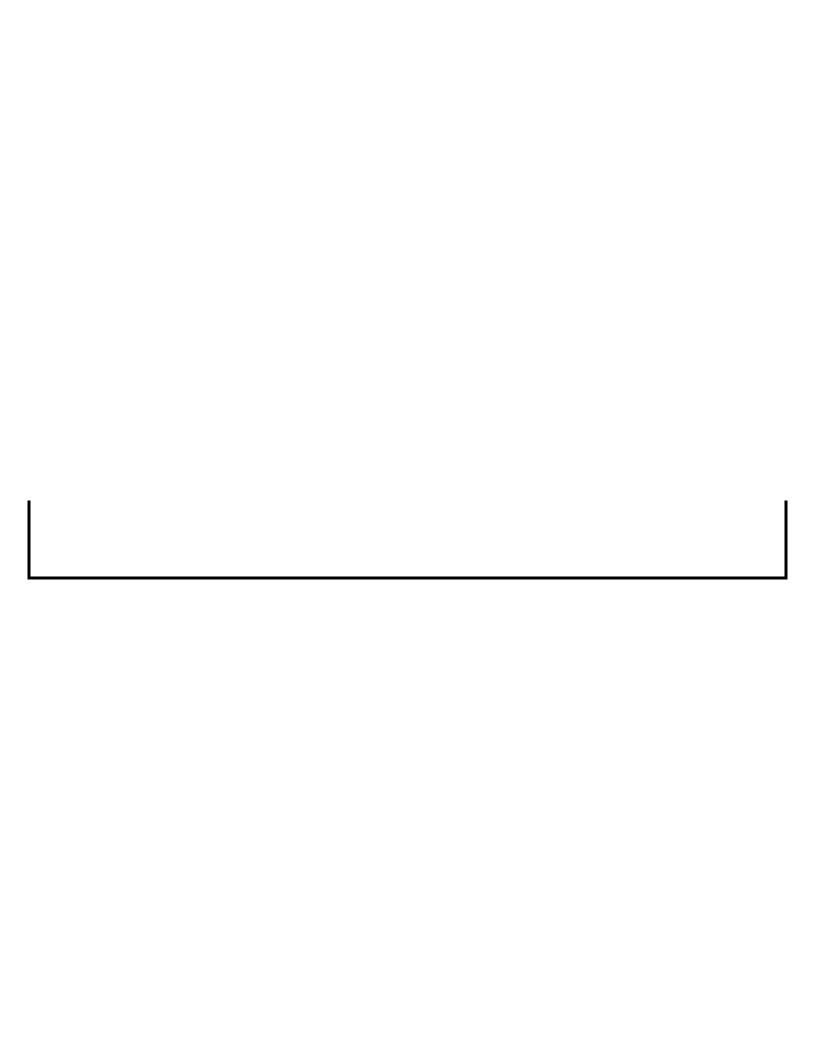
Recovery Electronics			
Rocket Locators (Make/Model)	Garmin Astro DC 40 (x2) EggFinder (x1)		
Transmitting Frequencies	Garmin Astro DC 40 - 151880 MHz EggFinder - 900 MHz		
Black Powder Mass Upper Airframe Chute (grams)	4		

	1 hour
Pad Stay Time (Launch Configuration)	
, o ,	

	4
Black Powder Lower Airframe Chute (grams)	
chate (grams)	

Milestone Review Flysheet

Please see Milestone Review Flysheet Instructions.


Institution	University of Louisville	Milestone	CDR

Autonomous Ground Support Equipment (AGSE)							
Capture Mechanism	Overview						
	A threadless screw will move down the height of the ground station where two gripper arms will grab the payload. From there, they will raise to system height, the rod rotates 90 degrees and then inserts the paylaod into the vehicle.						
Container Mechanism	Overview						
	The cache will be inserted into two clips, located inside the capsule. The clips mechanically retain the capsule. The doors to the capsule are actuated via servo, further retaining the door.						
	Overview						
Launch Rail Mechanism	The rail will not be locked in place, instead, a screw mechanism will guide the tower to the proper position. A motor will monitor and provide necessary torque to keep the platform at the 5 degree of vertical postion as stated from the statement of work. The motor will monitor and provide required torque to maintain position.						
	Overview						
Igniter Installation Mechanism	The igniter will be augmented with dowel rods and aluminum tape for shielding. Four wheels will extrude the igniter wire until it is in the proper placement in the vehicle. A magnetic field sensor will detect a magnetic flag on the wire to ensure proper placement.						
CG	Location of Laur	nch Pad (in inches) When Rail is Horizontal (Use Base of Rail as the Reference Point)					
Moment	nt Analysis	Vehicle horizontal: 22 inches (relative to ground) Vehicle in launch position: 26 inches (relative to ground)					

Payload					
	Overview				
	Custom weather sensing (wind speed, wind direction, and temperature) will be placed on the ground station to get a gradient of conditions that would effect flight. This data will be transmitted via bluetooth communications to the vehicle during flight to be recovered with the cache system.				
Payload 2	Overview				

Test Plans, Status, and Results							
Ejection Charge Tests	All ejection charges will be tested on the ground prior to flight to ensure that black powder charges are all properly sized.						
Sub-scale Test Flights	A subscale vortex ring was constructed and tested. This was used to verrify the design and the coefficient of drag that can be achived for the parachute.						

	ests are planned to validate all systems on board.						
Full-scale Test Flights							
	Milestone	Review Flyshe	net				
Please see Milestone Review Flysheet Instructions.							
Institution	*Please see Mileston University of Louisville	e Review Flysheet Insti	Milestone	CDR			
mstration	Oniversity of Edulavine		Willestone	CDIN			
Additional Comments							
	Unconventional payload deployment with use of	f cache capsule at 1,000 fe	et by use of fairing ejection syste	m.			

