Milestone Review Flysheet

Institution

University of Louisville

Please see Milestone Review Flysheet Instructions. Milestone

PDR

Vehicle Properties		
Total Length (in)	108	
Diameter (in)	6.12	
Gross Lift Off Weight (lb)	20.84	
Airframe Material	Carbon Fiber	
Fin Material	Fiberglass	
Drag	Drag coefficient: 0.34	

Stability Analysis			
Center of Pressure (in from nose)	79.36		
Center of Gravity (in from nose)	62.18		
Static Stability Margin	2.81		
Thrust-to-Weight Ratio	12.06		
Rail Size (in)/ Length (in)	96		
Rail Exit Velocity (ft/s)	60.9		

Recovery System Properties					
	Reefed Parachute				
Manufactu	urer/Model	Polyc	onical - custom	made	
Si	ze		677 ft^2		
Altitu	de at Deployme	nt (ft)	Apogee		
Veloci	ty at Deploymer	nt (ft/s)	(0	
Ter	minal Velocity (i	ft/s)	12	26	
Recovery Harness Material			9/16" tubular nylon		
Harness Size/Thickness (in)		ss (in)	9/16"		
Recovery Harness Length (ft)		gth (ft)	27		
Harness/Airframe Interfaces		1/4 inch U-bolt and quick link connected to swivel and qiucklink.		connected to a nk.	
Kinetic Energy of Each Section (ft-lbs)	Section 1	Section 2	Section 3	Section 4	

Recovery Electronics		
Altimeter(s)/Timer(s) (Make/Model)	PerfectFlite StratoLogger (x3) Arduino Mini (x1)	
Redundancy Plan	Nosecone avionics bay will utilize a Stratologger for a primary and redudundant altimeter. Reefing system shall utilize an arduino with barometric pressure sensor as primary altimeter, redundant Stratologger shall be	

Motor Properties		
Motor Manufacturer(s)	Cesaroni	
Motor Designation(s)	L935-IM	
Max/Average Thrust (lb)	356.5/209.9	
Total Impulse (lbf-sec)	707.4	
Mass (before, after burn)	5.6, 1.8	
Liftoff Thrust (lb)	148.4	

Ascent Analysis			
Maximum Velocity (ft/s)	640		
Maximum Mach Number	0.58		
Maximum Acceleration (ft/s^2)	345		
Target Apogee (1st Stage if Multiple Stages)	5287		
Stable Velocity (ft/s)	50		
Distance to Stable Velocity (ft)	7.9		

Recovery System Properties					
	Fully deployed Parachute				
Manufactu	irer/Model	Polyc	onical - custom	made	
Si	ze		677 ft^2		
Altitu	de at Deployme	ent (ft)	800		
Veloci	ty at Deploymer	nt (ft/s)	12	26	
Ter	minal Velocity (ft/s)	12	.71	
Recovery Harness Material			9/16" tubular nylon		
Harness Size/Thickness (in)		9/16"			
Recov	ery Harness Len	gth (ft)	27		
Harness/Airframe Interfaces 1/4 inch U-bolt and gu			ick link		
Kinetic Energy of Each Section (ft-lbs)	Section 1 (Nosecone)	Section 2 (Propulsion Bay)	Section 3	Section 4	
	12.29	47.71			

Recovery Electronics			
Rocket Locators (Make/Model)	Garmin Astro DC 40 (x1)		
Transmitting Frequencies	Garmin Astro DC 40 - 151880 MHz		
Black Powder Mass Upper Airframe Chute (grams)	4		

Pad Stay Ti Config	ime (Launch uration)	1 hour	Black Powder Lower Airframe Chute (grams) N/A		
		Milestor	ne Review Flysheet		
		Please see Milest	tone Review Flysheet Instructions.		
Institution		University of Louisville	Milestone PDR		
	T	Autonomous Gro	ound Support Equipment (AGSE)		
			Overview		
Capture Mechanism	A threadless screw will move down the height of the ground station where two gripper arms will grab the payload. From there, they will raise to system height, the rod rotates 90 degrees and then inserts the paylaod into the vehicle.				
			Overview		
Container Mechanism	The payload will be inserted into two clips, located inside the payload bay. The clips mechanically retain the capsu door to the payload bay will actuate via servo, sealing the payload from the environment.				
	Overview				
Launch Rail Mechanism	The rail will not be locked in place, instead, a screw mechanism will guide the tower to the proper position. A motor will monitor and provide necessary torque to keep the platform at the 5 degree of vertical postion as stated from the statement of work. The motor will monitor and provide required torque to maintain position.				
			Overview		
Igniter Installation Mechanism	The igniter will be augmented with dowel rods and aluminum tape for shielding. Four wheels will extrude the igniter wire it is in the proper placement in the vehicle. A magnetic field sensor will detect a magnetic flag on the wire to ensure proper placement.				
CG	CG Location of Launch Pad (in inches) When Rail is Horizontal (Use Base of Rail as the Reference Point)				
Momen	Vehicle horizontal: 22 inches (relative to ground) Vehicle in launch position: 26 inches (relative to ground)				

	Payload			
	Overview			
Payload 1	The AGSE will autonomously retrieve a payload utilizing a telescopic that will incorpate an acme screw and worm gearboxes to lock into specific positions. The launch vehicle will be secured to the AGSE using a guide tower launch platform. The guide tower will consist of three sheetmetal rails that will guide the rocket to a safe exit velocity. The vehicle will be actuated by a ball screw. The ingiter will be installed using a belt driven ingiter installation device. The igniter will be spooled prior to start of the autonmous sequence and will be straightned as it is inserted.			
	Overview			
Payload 2				

Test Plans, Status, and Results			
Ejection Charge Tests	All ejection charges will be tested on the ground prior to flight to ensure that black powder charges are all properly sized.		
Sub-scale Test Flights			

I (
Full-scale Test			
Flights			
	Ivillestone I	Review Flysheet	
La altheat an	*Please see Milestone	Review Flysheet Instructions.*	000
Institution	University of Louisville	Wilestone	PDR
	Additio	nal Comments	
	Unconventional parachute deployme	ent with Parachute reefing occuring at 800 ft.	