Milestone Review Flysheet

Please see Milestone Review Flysheet Instructions.

Institution	University of Louisville	D 4 1 t	PDR
Institution.	University of Louisville	Willestone	TIDK

Vehicle Properties			
Total Length (in)	143		
Diameter (in)	6.17		
Gross Lift Off Weight (lb)	38.3		
Airframe Material Carbon fiber Fin Material Fiberglass Drag Drag coefficient: 0.45			

Stability Analysis			
Center of Pressure (in from nose)	99.61		
Center of Gravity (in from nose)	87.35		
Static Stability Margin	1.99		
Thrust-to-Weight Ratio	5.48		
Rail Size (in)/ Length (in)	120		
Rail Exit Velocity (ft/s)	66.2		

Recovery System Properties						
Upper Airframe Parachute						
Manufactu	ırer/Model	Vorte	x Ring - custom	made		
Si	ze		4.7 ft^2			
Altitu	de at Deployme	nt (ft)	3000			
Veloci	ty at Deploymer	nt (ft/s)	64	1.4		
Terminal Velocity (ft/s)			18	3.4		
Recovery Harness Material			9/16" tubular nylon			
Harness Size/Thickness (in)			9/16"			
Recovery Harness Leng		gth (ft) 30				
Harness/Airframe Interfaces		1/4 ind	ch U-bolt and qu	ick link		
Kinetic Energy of Each	Section 1 (Upper Airframe)	Section 2	Section 3	Section 4		
Section (ft-lbs)	60					

Recovery Electronics				
Altimeter(s)/Timer(s) (Make/Model)	PerfectFlite StratoLogger (x5) Telemetrum v2.9 (x1)			
Redundancy Plan	Each avionics bay will have a StratoLogger as a back up altimeter. The upper and lower airframes utilize a StratoLogger as a primary altimeter while the cache capsule uses a TeleMetrum as the primary.			

Motor Properties			
Motor Manufacturer(s)	Cesaroni		
Motor Designation(s)	L935-IM		
Max/Average Thrust (lb)	356.5/209.9		
Total Impulse (lbf-sec)	707.4		
Mass (before, after burn)	5.6, 1.8		
Liftoff Thrust (lb)	148.4		

Ascent Analysis			
Maximum Velocity (ft/s)	471		
Maximum Mach Number	0.42		
Maximum Acceleration (ft/s^2)	248		
Target Apogee (1st Stage if Multiple Stages)	3431		
Stable Velocity (ft/s)	60		
Distance to Stable Velocity (ft)	8.5		

Recovery System Properties					
Lower Airframe Parachute					
Manufactu	ırer/Model	Cruc	iform - custom r	nade	
Si	ze		8.6 ft^2		
Altitu	de at Deployme	ent (ft)	1250		
Veloci	ty at Deploymer	nt (ft/s)	34	.19	
Terminal Velocity (ft/s)			16	.73	
Recov	very Harness Ma	aterial	9/16" tubular nylon		
Harne	ess Size/Thickne	ss (in)	9/16"		
Recovery Harness Length (f		gth (ft)	25		
Harness/Airfra	ame Interfaces	1/4 ind	ch U-bolt and qu	ick link	
Kinetic Energy of Each	Section 1 (Lower Airframe)	Section 2 (Cache Capsule)	Section 3	Section 4	
Section (ft-lbs)	60	30			

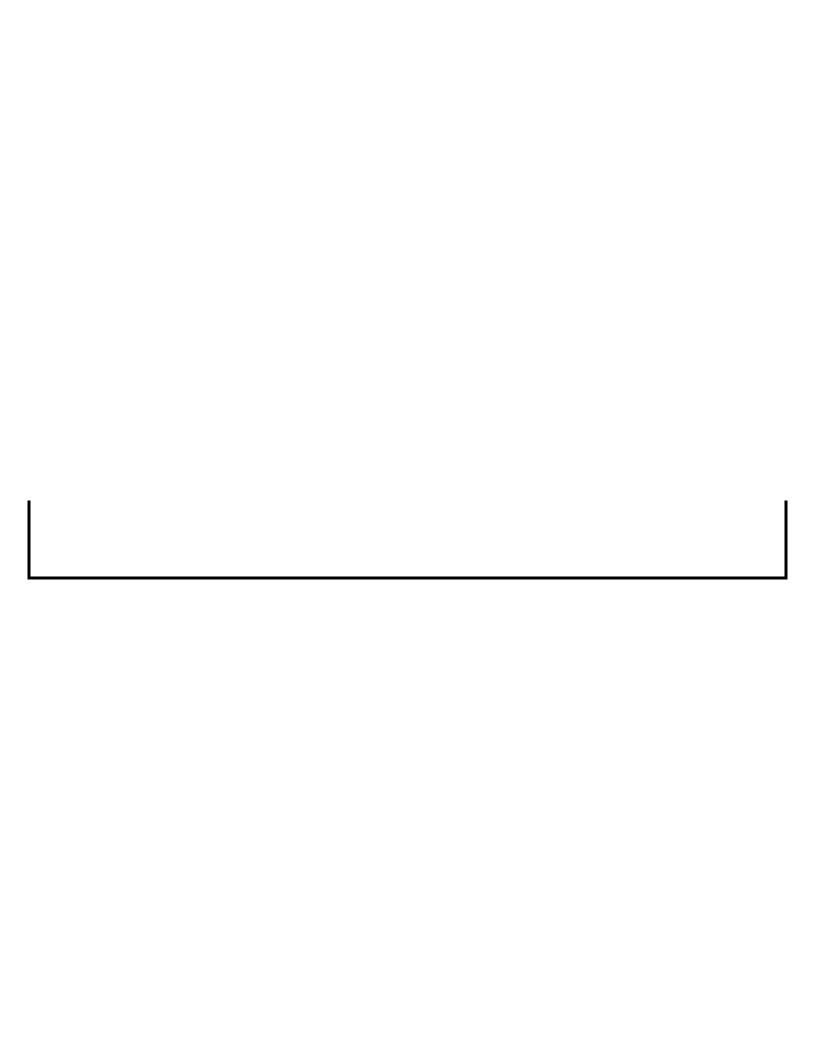
Recovery Electronics		
Rocket Locators (Make/Model)	Garmin Astro DC 40	
Transmitting Frequencies	***Required by CDR***	
Black Powder Mass Upper Airframe Chute (grams)	4	

	1 hour
Pad Stay Time (Launch	
Configuration)	

	4
Black Powder Lower Airframe Chute (grams)	
chate (grams)	

Milestone Review Flysheet

Please see Milestone Review Flysheet Instructions.


Institution	University of Louisville	Milesto	ne PDR	

Autonomous Ground Support Equipment (AGSE)						
Capture Mechanism	Overview					
	A threadless screw will move down the height of the ground station where two gripper arms will grab the payload. From there, they will raise to system height, the rod rotates 90 degrees and then inserts the paylaod into the vehicle.					
Container Mechanism	Overview					
	The cache will be inserted into two clips, locaged insied the capsule. The clips mechanically retain the capsule. The doors to the capsule are actuated via servo, further retaining the door.					
	Overview					
Launch Rail Mechanism	The rail will not be locked in place, instead, a screw mechanism will guide the tower to the proper position. A motor will monitor and provide necessary torque to keep the platform at the 5 degree of vertical postiion as stated from the statement of work.					
	Overview					
Igniter Installation Mechanism	The igniter will be augmented with dowel rods and aluminum tape for shielding. Four wheels will extude the igniter wire until it is in the proper placement in the vehicle. A magnetic field sensor will detect a magnetic flag on the wire to ensure proper placement.					
CG Location of Launch Pad (in inches) When Rail is Horizontal (Use Base of Rail as the Reference Point)						
Moment	it Analysis	Vehicle horizontal: 10.9310 inches. Vehicle in launch position: 35.8407				

Payload						
	Overview					
	Custom weather sensing (wind speed, wind direction, and temperature) will be placed on the ground station to get a gradient of conditions that would effect flight. This data will be transmitted via bluetooth communications to the vehicle during flight to be recovered with the cache system.					
Payload 2	Overview					
	N/A					

Test Plans, Status, and Results						
Ejection Charge Tests	All ejection charges will be tested on the ground prior to flight to ensure that black powder charges are all properly sized.					
Sub-scale Test Flights	One half scale aerodynamic test. Flying above 3000 ft to test bluetooth range. A subscale vortex ring will also be flown in recovery to validate design.					

г.										
	le tests are planned to validate all systems on board.									
Full-scale Test Flights										
Milestone Review Flysheet										
Please see Milestone Review Flysheet Instructions.										
Institution	University of Louisville		Milestone	PDR						
		_								
Additional Comments										

