Flight Readiness Review

University of Louisville River City Rocketry 2016-2017

1

FRR Presentation Agenda

Launch Vehicle

- Variable Drag System
- Recovery
- Full-Scale Flight Results
- Payload
- Safety
- Educational Outreach
- Budget

Overall Vehicle Design

- 6.1 inch diameter, 141 inch long, carbon fiber airframe
- Custom manufactured carbon fiber nose cone
- Removable Fin System
- Variable Drag System

Section Payload Recovery Bay Deployment Bay Booster < P m I Z D I D Z -I Recovery VDS Bay Propulsion Bay

Nose Cone

Airframe

- 6K carbon fiber filament wound airframe
- X-Winder Desktop Filament Winder
- Vacuum bagging and heat-shrink tape methods

Launch Vehicle Component Tests

Airframe Tensile Strength Test

Bulkplate Tensile Strength Test

Nose Cone

- Carbon Fiber LD Haack nose cone
- Positive and negative mold used to create nose cone

Nose Cone

- Carbon fiber nose cone cone vacuum formed
- 3D printed nose cone tip
- Painted and epoxied coupler tube

Avionics

- Six PerfectFlite Stratologger CF altimeters
- Three Eggfinder GPS tracking system

Motor Selection

Motor	AeroTech L2200-G
Diameter	75.0 mm
Total Weight	167.59 oz
Propellant Weight	88.75 oz
Average Thrust	2200.0 N
Maximum Thrust	3101.8 N
Total Impulse	5104.1 N-sec
Burn Time	2.3 Sec

Stability Margin

- Overall Length: 141 in
- Overall Diameter: 6.1 in
- Overall Weight: 50.7 lbs

- Stability Margin (off the rail) : 2.2
- CG Location at rail exit (from tip): 102.11 in
- CP Location at rail exit (from tip): 115.30 in

Full-Scale Launch Vehicle Flight Characteristics

Property	Value
Predicted Apogee Altitude (ft)	5,561 (no VDS)
Thrust-to-Weight Ratio	14.65
Burnout Velocity (ft/s)	721 (o.61 Mach)
Maximum Acceleration (ft/s ²)	469
Exit Rail Velocity (ft/s)	96.8

Mission Performance Predictions

Wind Speed (mph)	OpenRocket Simulated (No- brakes) Apogee Altitude (ft)	VDS Simulation (No-brakes) Apogee Altitude (ft.)	VDS Simulation (VDS Active) Apogee Altitude (ft.)
0	5,594	5,419	5,287
5	5,556	5,416	5,288
10	5,498	5,410	5,288
15	5,460	5,394	5,287
20	5,383	5,338	5,287

Mass Margin

- Launch vehicle overall weight for first two test flights was 45.5 lbs, compared to 43.95 lbs predicted in CDR
- A thicker paint job will be added to increase overall mass of launch vehicle to 50.7 lbs

Launch Vehicle Verification Status

- 34/40 team-derived requirements verified
- Remaining verifications include:
 - Full Scale Integration Launch Vehicle Tests

FRR Presentation Agenda

- Launch Vehicle
- Variable Drag System
- Recovery
- Full-Scale Flight Results
- Payload
- Safety
- Educational Outreach
- Budget

VDS Agenda

- Manufacturing Complete
- Braking Power Test
- VDS Demonstrations
- VDS Verification Status

Manufacturing Complete

VDS Electronics PCBs

Braking Power Test: Overview

Purpose: To demonstrate the system's ability to reduce the apogee of the vehicle.

Procedure Fly two full scale launches:

Overview: 1) Control Launch: To characterize the behavior of the vehicle without the VDS active.

2) Full-deploy Launch: To fully extend the drag blades at motor burnout to characterize the vehicle drag with the brakes.

Results: Pass. The VDS was able to reduce apogee of vehicle by 525 ft.

View from propulsion bay window above VDS on 2/26/17

Braking Power Test: Results

- First two launches served to demonstrate VDS braking power
- VDS reduced vehicle apogee by 525 ft.
 - Despite lower skin friction from paint job
 - Despite higher winds during control launch

VDS Verification Status

- 29/30 team-derived requirements verified
- Coefficient of drag requirement remains
- Will be verified before addendum on March 27th

VDS Demonstrations

- Duration demonstration: Capable of operating for > three hours
- Motor-Sensor Interaction demonstration: DC motor actuation does not affect sensor readings
- GPS-sensor interaction demonstration: GPS transmitter in adjacent bay does not affect sensor readings
- Actuation demonstration: VDS has robust control over its drag blade position

Outlook

- Perform 2nd control launch with:
 - Ballast
 - Working accelerometer
- Perform three performance launches before competition

VDS components

FRR Presentation Agenda

- Launch Vehicle
- Variable Drag System
- Recovery
- Full-Scale Flight Results
- Payload
- Safety
- Educational Outreach
- Budget

Recovery Overview

- Dual deploy from single bay using ARRD
- Crucifrom drogues for both sections
- Toroidal main parachute for both sections as well as multirotor deployment parachute

Tender Descender Redundancy

 Tender descender creates additional points of failure in system

 Device tends to snag and creates issues with e-matches and terminal blocks
RCR | FRR | 03/15/2017

ARRD Redundancy Plan

- Using ARRD with dual ematches
- ARRD has had 100% success in all test campaigns

Final Recovery Bay Configurations

Booster Configuration

Bag locking loops prevent premature deployment during extraction

ARRD Deployment

Recovery Specifications

Section	Average Descent Velocity (ft/s)	Kinetic Energy (ft-lb)
Booster	10.2	30
Deployment Bay	14.03	22
Multirotor Payload	23.02	78
Nose Cone	Data acquisition failure	Data acquisition failure

Drift Predictions – Simulation Verification

- Accuracy of OpenRocket weathercocking model verified
 - Max variance in attitude of 2.5° between flight data and simulation data

Simulations

Assumes vertical launch angle

- New model accounts for weathercocking
- Nose cone drift calculated by hand due to OpenRocket staging limitations

Drift Predictions

Wind Speed	Drift Distance (ft)			
(mph)	Booster	Deployment Bay	Payload	Nose Cone
0	~7	~7	~7	~7
5	270	504	334	173
10	652	1,119	790	467
15	1,010	1,678	1,185	758
20	1,515	2,374	1,736	1,162

Calculated using vertical launch rail angle

RCR | FRR

FRR Presentation Agenda

- Launch Vehicle
- Variable Drag System
- Recovery
- Full-Scale Flight Results
- Payload
- Safety
- Educational Outreach
- Budget

Full Scale Flight Test

• Two full scale test flights were conducted.

Date: February 18th Location: Elizabethtown, KY Apogee Attitude: 6,071 feet

Date: February 26th Location: Bowling Green, KY Apogee Altitude: 5,514 feet

Full Scale Test Flight Results

Property	February 18 th Launch Data	February 26 th Launch Data	Average
Deployment Bay Drogue Velocity (ft/s)	96.4	93.0	94.7
Deployment Bay Main Velocity (ft/s)	16.7	11.36	14.0
Booster Drogue Velocity (ft/s)	81.7	87.3	84.5
Booster Main Velocity (ft/s)	10.16	Main deployment failure	10.16
Nosecone Descent Velocity (ft/s)	Data logging device failed	Data logging device failed	N/A
Payload Deployment Parachute Velocity (ft/s)	Data logging device failed	23.3	23.3

February 18th Flight

Successful flight apart from 2 anomalies

		Time (E+ Apogee)	Event	
		o seconds	Apogee separation charge is ignited	
		7 seconds	Drogue parachute obscures recovery bay opening of separated booster	
E+ 0 Seconds	E+ 7 Seconds	8 seconds	Aerodynamic turbulence shifts	
			recovery gear. Ground is visible – booster is oriented fins up and is ballistic	
		13 seconds	Drogue is extracted by high velocity aerodynamic turbulence	
E+ 8 Seconds	E+ 13 Seconds			

Ballistic Anomaly

Ballistic Anomaly Damage Assessment

- No damage to recovery system.
- Slight zippering damage (.43 in fracture) present on launch vehicle air frame. Does not affect integrity of vehicle.

Ballistic State Mitigation

 Black powder tests confirm that drogue parachute exits airframe when packed loosely

Anomaly #2: Premature Payload Separation

- High opening force from deployment bay main forced premature shearing and ejection of payload
- Was deemed to be an enormous benefit is now implemented as primary deployment method with triplicate redundancy from original two BP charges

February 26th Flight

Successful deployment bay recovery

Booster main failure

Booster Main Failure Diagnosis

 Suspected to be result of combination of crippled drogue parachute and deployment interference from payload leg sheathes

Deployment Failure Mitigation

- Sheathes no longer mate with bulkplate
 - Have been redesigned with terminating fillets to eliminate any potential snag points for recovery harnessing

Recovery Verification Status

- 9/10 team-derived requirements verified
- Collision avoidance requirement remains
- Will be verified before addendum on March 27th

Outlook

- Perform additional full scale launches with:
 - Precise nose cone descent data
 - Precise payload opening force data
- Perform two fully integrated launches before competition

Full Scale Flight Test Results

Pressure Anomaly

- Pressure anomaly in VDS coupler
- Current prediction of cause of pressure drop is from motor burn
- Wooden plate epoxied into propulsion bay to seal VDS coupler from motor

Motor Thrust Curve

Coefficient of Drag Estimation

- Estimated coefficient of drag using Matlab
- Fit February 26th accelerometer flight data to the following equation:

$$a_a = -g - \frac{C_d \rho A_r v_a^2}{2m}$$

Inertial Roll Coupling

- Roll and attitude natural frequencies similar
- Caused by flexing between coupler joints and misalignment of fins

Exit Rail Velocity Calculation

FRR Presentation Agenda

- Launch Vehicle
- Variable Drag System
- Recovery
- Full-Scale Flight Results
- Payload
- Safety
- Educational Outreach
- Budget

Payload Design Overview

Mass (lb)	Motor to Motor (in)	Overall Deployed Width (in)	Height (in)	
			Stowed	Deployed
9.5	29.0	42.0	40.8	36.0
R	CR FRR 03/15/2017			55

Multirotor Recovery System (MRS)

- Primary recovery system
- Fully Autonomous
 Propulsion system

Propulsion System

MRS Electronics

- GPS coordinates and velocity set-points handle autonomous flight of Payload
- General Purpose Input/Output (GPIO) on flight computer handles low-level communication with RRS and monitoring of arm deployment using limit switches

Flight Testing

- Manual Flight Testing
 - Controlled by trained operator
- Autonomous Flight Testing
 - Controlled by onboard flight computer
- Fully Integrated Flight Testing
 - Integration of MRS, RRS, TDS
 - In progress

Flight Testing Results

- Issues with electromagnetic noise from motors when GPS/Compass module was mounted internally on the Payload
- Solved by moving GPS/Compass module to an external location

Compass noise vs. thrust (left), Oscillation around a central point (right)

Noise eliminated after GPS/Compass module moved

Redundant Recovery System (RRS)

- Cut away from deployment parachute
- Monitor flight conditions
- Deploy recovery parachute if max KE is exceeded or from manual deployment

RRS Testing

- Drop Test from 65 ft. AGL
- Deploy recovery parachute upon exceeding kinetic energy threshold
- Test result: <u>Success</u>

RRS Prototype and Changes

- RRS prototype used to verify circuit and logic functionality
- Flown on two full scale vehicle test flights and recorded accurate data
- Changed to grounding throttle control line for MRS motors
- Upgraded receiver and transmitter for increased range
- Upgraded to BMP280 commercial barometer

Target Detection System (TDS)

- Preliminary testing has been successful
- Payload test flights have been utilized to obtain pictures for TDS testing
- Since CDR improvements have been made to account for more scenarios such as lighting changes

TDS Housing

- Camera housing redesigned
 - Incorporate seals
 - Increase rigidity

Payload Structural System (PSS)

- Houses all flight electronics
- Reacts all flight loads
- Doubles as coupler for the vehicle

Coupler Body

- 6" Carbon Fiber Coupler
- All thread Mounting System for 3D printed electronic sleds
- All thread rods preload's Coupler for structural stability during flight

Upper Bulkplate Assembly

Contains RRS tube, ARRD cutaway mechanism, Limit Switches, and Propulsion Arms.

RRS Tube Redesign

- RRS Cap
- Improper seal; failed RRS demonstration
- Part Fracture upon landing

Redesigned RRS Cap

RRS Tube Joint Redesign (cont.)

Broken Epoxy Joint due to landing

Redesigned RRS Shear Collar

Landing Leg System (LLS)

- Similar Design to MRS Propulsion Arms
- Successful
 Deployment
 Verification
- Successful flight deployment

Deployment System

- Deployment Bay
- Main opening force primary separation
- Redundant black powder charges still present

Deployment Bay Manufacturing and Testing

Deployment System

Main Recovery Bay

 Added leg sheath close-offs to prevent recovery interference.

Main Recovery Bay Deployment Verification

- No interference between LLS and recovery gear
- Successful leg actuation
- LLS flew on full scale flight 02/18/2017 and successfully deployed.

Payload Verification Status

- 66/90 team-derived requirements verified
- Remaining verifications include:
 - Full Scale Integration Launch Vehicle Tests

FRR Presentation Agenda

- Launch Vehicle
- Variable Drag System
- Recovery
- Full-Scale Flight Results
- Payload
- Safety
- Educational Outreach
- Budget

Launch Operations

6 Launch Concerns and Operations Procedures

6.1 Launch Operations Checklist

- **Overall Final Assembly Checklist (requirement 1.7)** 6.1.6 Required Equipment:
 - Allen Wrench Set SAE
 - Phillips Head Screwdriver (large)

 - Flat Head Screwdriver (Large)
 - Small Screwdriver Set (Small)

- Masking tape
- Socket Cap Screws
- 4-40 shear pins
- Socket Wrench Set for ¼-20 Nuts and 10-32 Nuts
- Attach propulsion bay to VDS coupler using 3x 8-32 metal bolts.
- Attach upper VDS coupler to the booster recovery bay using x3 8-32 shear pins.
- Connect the ejection charge canisters to the VDS coupler bulkplate by attaching the e-matches to the respective terminal blocks.
- Attach booster recovery bay to the payload coupler using x3 4-40 nylon shear pins.
- 5. Attach the payload coupler to deployment bay using x3 4-40 nylon shear pins.
- Connect the ejection charge canisters to the deployment coupler bulkplate by attaching the e-matches to 6. the respective terminal blocks.
- 7. Attach the deployment bay to the payload recovery bay using x3 8-32 nylon shear pins.
- Attach the payload recovery bay to the nose cone using x3 4-40 nylon shear pins. 8.
- Check that the coupling does not allow for any flexing of the rocket between any airframe and coupler tubes. Should this occur, add layers of painters tape to the coupler tubing on the payload bay until sufficient coupling is achieved.
- Tape motor igniter to the outside of the lower sustainer in a place easily seen by the field RSO. 10.
- Ensure all screw switches to altimeters on the interior of the launch vehicle are visible and accessible 11. from the exterior of the launch vehicle.
- A final visual inspection will need to be done to ensure all systems are go. 12.

Final Assembly Representatives Signatures:

Safety Officer Signature:

Clear to Leave for Launch Pad

6.1.7 All sections of the safety checklist preceding must be complete and signed prior to leaving for the launch pad. A signature from every lead, co-captains, and safety officer must sign off to proceed to the pad.

Vehicle Lead: Recovery Lead: VDS Lead: Payload Lead: Signatures indicating the rocket is a "Go" for launch: Team Co-Captain: Team Co-Captain:

Risk Assessment Matrix

Risk Assessment Matrix							
Probability Value	Severity Value						
	(XXX)-(1)	(XXX)-(2)	(XXX)-(3)	(XXX)-(4)			
Almost Certain- (1)	2-High	3-High	4-High	5-Moderate			
Likely-(2)	3-High	4-High	5-Moderate	6-Moderate			
Moderate-(3)	4-High	5-Moderate	6-Moderate	7-Low			
Unlikely-(4)	5-Moderate	6-Moderate	7-Low	8-Low			
Improbable-(5)	6-Moderate	7-Low	8-Low	9-Low			

Human Safety Hazard Analysis

FRR Presentation Agenda

- Launch Vehicle
- Variable Drag System
- Recovery
- Full-Scale Flight Results
- Payload
- Safety
- Educational Outreach
- Budget

Educational Outreach

Educational Outreach Student Count					
	NASA Requirement	Our Requirement			
Requirement to reach	200	200	0		
Students yet to be reached	Complete	Complete			
Students reached at CDR	1226	Current Total	3,176		

FRR Presentation Agenda

- Launch Vehicle
- Variable Drag System
- Recovery
- Full-Scale Flight Results
- Payload
- Safety
- Educational Outreach
- Budget

2016 – 2017 Overall Budget

Overall Tentative Budget					
Budget	Increase from CDR	Total Cost			
Variable Drag System	\$352.30	\$1,431.75			
Full-Scale Vehicle	\$5,163.66	\$10,232.49			
Sub-Sscale Vehicle	0	\$1,000.34			
Recovery	\$1,266.09	\$2,951.84			
Payload	\$1,957.59	\$4,815.73			
Educational Engagement	0	\$1,877.03			
Equipment and Misc.	0	\$1,344.88			
Travel	0	\$4,632.30			
Promotional Materials	0	\$2,187.50			
Overall Cost	t .	\$30,473.86			

Sustainable Budget

Sustainable Budget									
Inflow									
Donor	Description of Donation	Date Submitted	Date Received	Amount Requested	Accepted				
2015-2016 RCR Remaining Balance	Remaining balance of the teams expenditures from the 2015-2016 NASA Student Launch Competition	N/A	N/A	\$23,799.00	Y				
J.B. Speed School	The University of Louisville J.B. Speed School donates based off presentation of materials and amount requested/needed by the organization, including money from the JB Speed school student council.	Thursday, September 22, 2016	Friday, October 28, 2016	\$5,300.00	Y				
Raytheon Missle Systems	Assistance in outreach event MathMovesU.	Thursday, October 13, 2016	Thursday, October 27, 2016	\$1,000.00	Y				
U of L, Department of Mechanical Engineering	The Department of Mechanical Engineering donated to the team for continued success in the NASA SL competition and persevering of River City Rocketry	Saturday, November 12, 2016	Monday, December 5, 2016	\$2,000.00	Y				
Anonymous Donations	Various anonymous donations made through the river city rocketry website	Wednesday, May 3, 2017	Wednesday, May 3, 2017	\$125.00	Y				
Dr. Kelly Donation	An alumni of the University of Louisville who has worked in the aerospace industry and expressed continuous interest in the team.	Thursday, December 8, 2016	TBD	\$10,053.27	Y				
Overall Income					1				
Outlfow									
Expected Team Expenses				\$30,473.86	<u> </u>				
End of the Season Expected Total				\$11,803.41					

